• Title/Summary/Keyword: TNF-β

Search Result 436, Processing Time 0.029 seconds

Effects of yeast hydrolysate supplementation on intestinal morphology, barrier, and anti-inflammatory functions of broilers

  • Wang, Ting;Cheng, Kang;Li, QiMing;Wang, Tian
    • Animal Bioscience
    • /
    • v.35 no.6
    • /
    • pp.858-868
    • /
    • 2022
  • Objective: This study was conducted to evaluate the effects of dietary yeast hydrolysate (YH) supplementation on intestinal morphology, barrier, and anti-inflammatory functions of broilers. Methods: A total of 320 one day old male broilers were randomly allocated into four groups with eight replicates of ten broilers each. The broilers were supplemented with a basal diet (the control group) or basal diets adding 50, 100, 150 mg/kg YH, respectively. This trial lasted for 42 days. The orthogonal polynomial contrasts were used to determine the linear and quadratic effects of increasing levels of YH. Results: In our previous research, supplementing YH improved growth performance by enhancing body weight gain but decreased feed-to-gain ratio. In this study, compared with the control group, dietary YH addition linearly and quadratically decreased serum diamine oxidase activity (p<0.05). Additionally, supplementing YH linearly and/or quadratically decreased jejunal crypt depth (CD), tumor necrosis factor-alpha (TNF-α) concentration as well as mucin 2, interleukin-6 (IL-6), IL-1β, TNF-α, nuclear factor kappa B, and myeloid differentiation factor 88 gene expression levels (p<0.05). Whereas the jejunal villus height (VH), VH/CD, IL-10 concentration as well as zonula occludens-1 and IL-10 gene expression levels were linearly and/or quadratically increased by YH supplementation (p<0.05). Conclusion: Dietary YH supplementation improved intestinal morphology, barrier and anti-inflammatory functions while decreased intestinal permeability of broilers, which might be related with altering pertinent genes expression. This study provides evidence of YH as a promising feed additive for broilers.

Silymarin attenuates escitalopram (cipralex) induced pancreatic injury in adult male albino rats: a biochemical, histological, and immunohistochemical approach

  • Rasha Mamdouh Salama;Sara Gamal Tayel
    • Anatomy and Cell Biology
    • /
    • v.56 no.1
    • /
    • pp.122-136
    • /
    • 2023
  • Depression is a prevalent global problem since ages, predominately treated with SSRI. Cipralex, is an antidepressant of the SSRIs class used as a remedy for mood, depression and anxiety. Silymarin (SIL), a natural free radical scavenging, has an antioxidant and anti-inflammatory properties. This hypothesis evaluates, for the first time, the role of cipralex on the structure of the endocrine and exocrine components of the pancreas and assess the beneficial effects of SIL on these changes. Forty-five rats were divided into control, cipralex, and cipralex plus SIL groups. During sacrifice, all rats and pancreases were weighed and the ratio of pancreatic weight (PW) to rat weight (RW) was calculated, blood samples were collected to estimate fasting glucose, insulin and amylase levels, the specimens were prepared for histological, immunohistochemical (inducible nitric oxide synthase [iNOS], tumour necrosis factor-alpha [TNF-α], caspase 3, proliferating cell nuclear antigen [PCNA], and anti-insulin antibody), and morphometrical studies. Cipralex group exhibited marked destruction of the pancreatic architecture of the exocrine and endocrine parts, with a dense collagen fiber deposition. Also, there is highly significant decrease (P<0.001) of PW/RT ratio, insulin, and amylase levels, the number and diameter of islets of Langerhans, the number of PCNA positive immunoreactive cells, and the number of insulin positive β-cells. Furthermore, a highly significant increase of glucose level, iNOS, TNF-α, and caspase-3 positive immunoreactive cells in the islets of Langerhans and acinar cells were observed. SIL improves the pancreatic histological architecture, weight loss, biochemical, and immunohistochemical analyses. Administering SIL is advantageous in managing cipralex induced pancreatic injury via its anti-inflammatory, antioxidant, and anti-apoptotic qualities.

Anti-Allergic Effects of Angelica gigas Nakai and Corni fructus extract (AC) on degranulation and production of cytokine in RBL-2H3 mast Cells (RBL-2H3 세포에서 당귀(當歸) 및 산수유(山茱萸) 복합추출물의 알레르기 개선에 대한 효과)

  • Tae Woo Oh
    • Herbal Formula Science
    • /
    • v.31 no.4
    • /
    • pp.315-325
    • /
    • 2023
  • Objectives : Recently, research has been actively conducted on the efficacy of complexes based on oriental medicine prescriptions for improving immune activity and allergies. In this study, In this study, we aimed to examine the effect of Angelica gigas Nakai and Corni fructus extract (AC), medicinal herbs, among candidate drugs derived through preliminary experiments with various components of oriental medicine prescriptions for allergies, on allergies in RBL-2H3 cells. Methods : We evaluated the effect of the ethanol extract of Ulmus on the allergic inflammatory response in anti-DNP-IgE activated DNP-HSA in RBL-2H3 cells. Cell toxicity was determined by WST-1 assay and the markers of degranulation such as beta-hexosaminidase, histamine, TNF-α and IL-6 production of inflammatory mediators and FcεRI-mediated expression. Results : The results showed that treatment with AC extract (20, 40 and 80㎍/㎖) noncytotoxic levels and significantly inhibited the release of β-hexosaminidase, histamine and the production of TNF-α and IL-6 in RBL-2H3 by the antigen stimulation. Conclusions : These results indicate that AC extract exhibits anti-allergic activity through inhibition of degranulation and inhibition of inflammatory mediators and cytokine release. These findings suggest that AC extract may have potential as a prophylactic and therapeutic agent for the treatment of various allergic diseases.

Immune Enhancement Effects of Neutral Lipids, Glycolipids, Phospholipids from Halocynthia aurantium Tunic on RAW264.7 Macrophages

  • A-yeong Jang;Weerawan Rod-in;Il-shik Shin;Woo Jung Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.476-483
    • /
    • 2024
  • Fractionated lipids of Halocynthia aurantium (Pyuridae) have been demonstrated to possess anti-inflammatory properties. However, their modulatory properties have not been reported yet. Thus, the objective of this study was to determine immune enhancing effects of fractionated lipids from H. aurantium tunic on macrophage cells. The tunic of H. aurantium was used to isolate total lipids, which were then subsequently separated into neutral lipids, glycolipids, and phospholipids. RAW264.7 cells were stimulated with different concentrations (0.5, 1.0, 2.0, and 4.0%) of each fractionated lipid. Cytotoxicity, production of NO, expression levels of immune-associated genes, and signaling pathways were then determined. Neutral lipids and glycolipids significantly stimulated NO and PGE2 production and expression levels of IL-1β, IL-6, TNF-α, and COX-2 in a dose-dependent manner, while phospholipids ineffectively induced NO production and mRNA expression. Furthermore, it was found that both neutral lipids and glycolipids increased NF-κB p-65, p38, ERK1/2, and JNK phosphorylation, suggesting that these lipids might enhance immunity by activating NF-κB and MAPK signaling pathways. In addition, H. aurantium lipids-induced TNF-α expression was decreased by blocking MAPK or NF-κB signaling pathways. Phagocytic activity of RAW 264.7 cells was also significantly enhanced by neutral lipids and glycolipids. These results suggest that neutral lipids and glycolipids from H. aurantium tunic have potential as immune-enhancing materials.

Inhibitory Effect of Gamihwalhyeol-tang on Inflammatory Cytokine and NF-kB, AP-1 Activation in Human Synovial Cells (가미활혈탕이 Rheumatoid arthritis 관련 싸이토카인 및 전사인자에 미치는 영향)

  • Shin Sang Moon;Park Jong Ho;Yoo Dong Youl;Kim Dong Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.165-176
    • /
    • 2003
  • The present study was carried out to examine the effects of Kami-hwal-hyeol-tang(KHHT) on the immune responses of synoviocyte cells prepared from the rheumatoid arthritis patients, and also on the collagen-mediated arthritis in mouse model. Several experiments were performed in vitro and in vivo to analyse the immunomodulatory effects of KHHT, and the major findings are summarized below: 1. KHHT did not show the cytotoxicity against mLFCs and hFLSs. 2. KHHT inhibited gene expression of IL-1β, IL-6, TNF-α, COX-2, NOS and GM-CSF in hFLSs. Furthermore, KHHT-treated hFLSs showed reduced production of pro-inflammatory cytokines such as IL-1β and IL-6 compared to the control cells. 3. KHHT treatment of hFLSs inhibited the binding activity of NF-kB and AP-1 to their consensus DNA sequences. 4. KHHT treatment(400 ㎍/㎖) of hFLSs significantly inhibited hFLSs proliferations compared to the control cells. 5. KHHT significantly reduced the production of ROS in hFLSs compared to the control cells. The present data show that KHHT plays an important role for the regulation of AP-1 and NF-kB gene expression. Also, it was found that KHHT has anti-arthritis effect. Further studies of KHHT in relation to RA therapeutics may provide important information to develop drugs to treat this disease.

Orostachys japonicus Hexane Fraction Attenuates Pro-inflammatory Cytokines in LPS-activated Macrophage Cells by Suppression of AP-1 and IRF3 Transcription Factors (LPS로 유도된 대식세포에 대한 와송 핵산추출물의 AP-1과 IRF3 전사인자의 억제에 의한 전염증성 사이토카인의 감소 효과)

  • Lee, Hyeong-Seon
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.310-315
    • /
    • 2020
  • Orostachys japonicus (O. japonicus) is known as a medicinal plant for the treatment of various symptoms. This study investigated the anti-inflammatory effect of the hexane fraction from O. japonicus (OJH) on the LPS-stimulated response in RAW 264.7 macrophage cells. This study was conducted to confirm the effect of cell cytotoxicity and production of reactive oxygen species (ROS) in OJH-treated macrophage cells. Additionally, pro-inflammatory cytokines and transcription factors were determined using RT-PCR and western blotting assay. OJH showed no change in lactate dehydrogenase (LDH) levels and exhibited reduced ROS levels in LPS-induced inflammatory cells. Moreover, OJH significantly suppressed the mRNA levels of proinflammatory cytokines, including IL-1β, IL-2, IL-6, TNF-α, and IP-10. Furthermore, OJH effectively inhibited the protein levels of AP-1 (p-c-Jun and p-c-Fos) and p-IRF3 in a dose-dependent manner. In conclusion, our results demonstrate that OJH exhibits strong anti-inflammatory activities via regulation of inflammatory factors.

Anti-inflammatory Effect of Flower Bud and Fruit of Sweet Persimmon, Diospyros kaki T.

  • Park, Yeo Ok;Lee, Jeong Ah;Park, Seong Moon;Ha, Min Hee;Joo, Woo Hong;Kim, Dong Wan
    • Biomedical Science Letters
    • /
    • v.26 no.2
    • /
    • pp.85-92
    • /
    • 2020
  • Various beneficial effects of sweet persimmon (Diospyros kaki T.) including anti-oxidation, anti-bacteria and viruses, anti-allergy were widely reported previously. However, the anti-inflammatory effect and its molecular mechanisms are not clear. In this study, the anti-inflammatory effect of the extracts of flower bud and fruit of sweet persimmon was investigated in LPS-treated RAW264.7 cells. Both extracts of flower bud and fruit showed strong inhibitory effect on the LPS-induced NF-κB activation. IκBα, the inhibitor of NF-κB, was increased and the expressions of NF-κB target genes, COX-2 and iNOS, were suppressed by the treatment with the extracts of flower bud and fruit. The expressions of pro-inflammatory cytokines, IL-1β, IL-6, TNF-α were also suppressed by the extracts. In addition, the LPS-induced wnt/β-catenin pathway and its related gene expressions including cyclin D1, wnt 3a, wnt 5a were suppressed by the extracts. The extracts also showed anti-oxidant activity and suppressive effect on the LPS-induced apoptosis of RAW264.7 cells. These results suggest that the flower bud and fruit of sweet persimmon display strong anti-inflammatory effect through inhibiting the pro-inflammatory signaling pathways in the cells.

Gintonin regulates inflammation in human IL-1β-stimulated fibroblast-like synoviocytes and carrageenan/kaolin-induced arthritis in rats through LPAR2

  • Kim, Mijin;Sur, Bongjun;Villa, Thea;Yun, Jaesuk;Nah, Seung Yeol;Oh, Seikwan
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.575-582
    • /
    • 2021
  • Background: In ginseng, there exists a glycolipoprotein complex with a special form of lipid LPAs called Gintonin. The purpose of this study is to show that Gintonin has a therapeutic effect on rheumatoid arthritis through LPA2 receptors. Methods: Fibroblast-like synoviocytes (FLS) were treated with Gintonin and stimulated with interleukin (IL)-1β. The antioxidant effect of Gintonin was measured using MitoSOX and H2DCFDA experiments. The anti-arthritic efficacy of Gintonin was examined by analyzing the expression levels of inflammatory mediators, phosphorylation of mitogen-activated protein kinase (MAPK) pathways, and translocation of nuclear factor kappa B (NF-κB)/p65 into the nucleus through western blot. Next, after treatment with LPAR2 antagonist, western blot analysis was performed to measure inflammatory mediator expression levels, and NF-κB signaling pathway. Carrageenan/kaolin-induced arthritis rat model was used. Rats were orally administered with Gintonin (25, 50, and 100 mg/kg) every day for 6 days. The knee joint thickness, squeaking score, and weight distribution ratio (WDR) were measured as the behavioral parameters. After sacrifice, H&E staining was performed for histological analysis. Results: Gintonin significantly inhibited the expression of iNOS, TNF-α, IL-6 and COX-2. Gintonin prevented NF-κB/p65 from moving into the nucleus through the JNK and ERK MAPK phosphorylation in FLS cells. However, pretreatment with an LPA2 antagonist significantly reversed these effects of Gintonin. In the arthritis rat model, Gintonin suppressed all parameters that were measured. Conclusion: This study suggests that LPA2 receptor plays a key role in mediating the anti-arthritic effects of Gintonin by modulating inflammatory mediators, the MAPK and NF-κB signaling pathways.

Triptolide improves myocardial fibrosis in rats through inhibition of nuclear factor kappa B and NLR family pyrin domain containing 3 inflammasome pathway

  • Shen, Jianyao;Ma, Hailiang;Wang, Chaoquan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.533-543
    • /
    • 2021
  • Myocardial fibrosis (MF) is the result of persistent and repeated aggravation of myocardial ischemia and hypoxia, leading to the gradual development of heart failure of chronic ischemic heart disease. Triptolide (TPL) is identified to be involved in the treatment for MF. This study aims to explore the mechanism of TPL in the treatment of MF. The MF rat model was established, subcutaneously injected with isoproterenol and treated by subcutaneous injection of TPL. The cardiac function of each group was evaluated, including LVEF, LVFS, LVES, and LVED. The expressions of ANP, BNP, inflammatory related factors (IL-1β, IL-18, TNF-α, MCP-1, VCAM1), NLRP3 inflammasome factors (NLRP3, ASC) and fibrosis related factors (TGF-β1, COL1, and COL3) in rats were dete cted. H&E staining and Masson staining were used to observe myocardial cell inflammation and fibrosis of rats. Western blot was used to detect the p-P65 and t-P65 levels in nucleoprotein of rat myocardial tissues. LVED and LVES of MF group were significantly upregulated, LVEF and LVFS were significantly downregulated, while TPL treatment reversed these trends; TPL treatment downregulated the tissue injury and improved the pathological damage of MF rats. TPL treatment downregulated the levels of inflammatory factors and fibrosis factors, and inhibited the activation of NLRP3 inflammasome. Activation of NLRP3 inflammasome or NF-κB pathway reversed the effect of TPL on MF. Collectively, TPL inhibited the activation of NLRP3 inflammasome by inhibiting NF-κB pathway, and improved MF in MF rats.

Effects of Aged Platycodon grandiflorum on Cyclophosphamide-induced Immunosuppression in Mice (홍도라지 추출물이 마우스 모델에서 Cyclophosphamide에 의한 면역력 저하 억제에 미치는 영향)

  • Lee, Eun Byeol;Choi, Ji-Hye;Jang, Hwan-Hee;Hong, Ha-Cheol;Lee, Hae-Jeung;Jeong, Hyun Cheol;Lee, Sung-Jin;Lee, Sung Hyen
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.4
    • /
    • pp.340-348
    • /
    • 2020
  • This study was conducted to evaluate the immunomodulatory effects of red doraji (Platycodon grandiflorum, RD) prepared by repeated steaming and drying process in the immune-suppressed mice induced by pre (RD-A) or post-treatment (RD-B) with cyclophosphamide. The immune-stimulating effects of ethanol RD extract in in vivo at 150 (RD-1) and 300 mg/kg body weight (RD-2) for RD-A and RD-B groups were measured and compared to the NC group supplied with distilled water only or positive control group. After 14 days of oral supplement, serum IgA, IgG, and cytokine levels, splenocytes proliferation rate, NK cell activity, and gene expression of cytokines were measured as immune related biomarkers. Serum IgA, IgG, IL-1β, and IL-12 levels increased in both RD-A and RD-B groups while serum TNF-α level decreased in RD-A group compared to the NC group. Splenocytes proliferation rate, NK cell activity, and cytokine (IL-1β, IL-6, IFN-γ) expression levels were also improved by RD supplement in the both groups. The RD showed more significant immunomodulatory effects at higher dose (RD-2) rather than the lower dose (RD-1). Thus, RD has an immune efficacy in a dose dependent manner and can be used as an immune stimulating source to improve immunity.