• 제목/요약/키워드: TNF receptor superfamily

검색결과 14건 처리시간 0.027초

Structural insights of homotypic interaction domains in the ligand-receptor signal transduction of tumor necrosis factor (TNF)

  • Park, Young-Hoon;Jeong, Mi Suk;Jang, Se Bok
    • BMB Reports
    • /
    • 제49권3호
    • /
    • pp.159-166
    • /
    • 2016
  • Several members of tumor necrosis factor receptor (TNFR) superfamily that these members activate caspase-8 from death-inducing signaling complex (DISC) in TNF ligand-receptor signal transduction have been identified. In the extrinsic pathway, apoptotic signal transduction is induced in death domain (DD) superfamily; it consists of a hexahelical bundle that contains 80 amino acids. The DD superfamily includes about 100 members that belong to four subfamilies: death domain (DD), caspase recruitment domain (CARD), pyrin domain (PYD), and death effector domain (DED). This superfamily contains key building blocks: with these blocks, multimeric complexes are formed through homotypic interactions. Furthermore, each DD-binding event occurs exclusively. The DD superfamily regulates the balance between death and survival of cells. In this study, the structures, functions, and unique features of DD superfamily members are compared with their complexes. By elucidating structural insights of DD superfamily members, we investigate the interaction mechanisms of DD domains; these domains are involved in TNF ligand-receptor signaling. These DD superfamily members play a pivotal role in the development of more specific treatments of cancer.

Modulation of Life and Death by the Tumor Necrosis Factor Receptor-Associated Factors (TRAFs)

  • Lee, Na-Kyung;Lee, Soo-Young
    • BMB Reports
    • /
    • 제35권1호
    • /
    • pp.61-66
    • /
    • 2002
  • The TNF receptor-associated factor (TRAF) family is a group of adapter proteins that link a wide variety of cell surface receptors. Including the TNF and IL-1 receptor superfamily to diverse signaling cascades, which lead to the activation of NF-${\kappa}B$ and mitogen-activated protein kinases. In addition, TRAFs interact with a variety of proteins that regulate receptor-induced cell death or survival. Thus, TRAF-mediated signals may directly induce cell survival or interfere with the death receptor-induced apoptosis.

HVEM is a TNF Receptor with Multiple Regulatory Roles in the Mucosal Immune System

  • Shui, Jr-Wen;Kronenberg, Mitchell
    • IMMUNE NETWORK
    • /
    • 제14권2호
    • /
    • pp.67-72
    • /
    • 2014
  • The herpes virus entry mediator (HVEM) is a member of the tumor necrosis factor receptor superfamily (TNFRSF), and therefore it is also known as TNFRSF14 or CD270 (1,2). In recent years, we have focused on understanding HVEM function in the mucosa of the intestine, particularly on the role of HVEM in colitis pathogenesis, host defense and regulation of the microbiota (2-4). HVEM is an unusual TNF receptor because of its high expression levels in the gut epithelium, its capacity to bind ligands that are not members of the TNF super family, including immunoglobulin (Ig) superfamily members BTLA and CD160, and its bi-directional functionality, acting as a signaling receptor or as a ligand for the receptor BTLA. Clinically, Hvem recently was reported as an inflammatory bowel disease (IBD) risk gene as a result of genome wide association studies (5,6). This suggests HVEM could have a regulatory role influencing the regulation of epithelial barrier, host defense and the microbiota. Consistent with this, using mouse models, we have revealed how HVEM is involved in colitis pathogenesis, mucosal host defense and epithelial immunity (3,7). Although further studies are needed, our results provide the fundamental basis for understanding why Hvem is an IBD risk gene, and they confirm that HVEM is a mucosal gatekeeper with multiple regulatory functions in the mucosa.

Characterization of the NF-$textsc{k}$B Activation Induced by TR8, an Osteoclastogenic Tumor Necrosis Factor Receptor Family Member

  • Kim, Hong-Hee
    • Archives of Pharmacal Research
    • /
    • 제22권5호
    • /
    • pp.454-458
    • /
    • 1999
  • TR8 is a recently identified member of the tumor necrosis factor (TNF) receptor superfamily. TR8 seems to play important roles in bone metabolism as stimulation of this receptor with its ligand, TL8 or osteoclast differentiation factor (ODF), induced the differentiation and activation of osteoclasts. Despite its important biological functions, the biochemcial events ensuing form TR8 activation have not been revealed in detail. Most of TNF receptor family proteins provoke the activation of the NF-$textsc{k}$B transcription factor. In the present study, we examined the signaling potential of TR8 to induce NF-B activation. When overexpressed in a human embryonic kidney cell line by transient transfection, TR8 caused a strong activation of NF-$textsc{k}$B, which was further increased upon stimulation with TL8. The TR8-induced NF-B activation was abrogated by the co-expression of the TRAF6 mutnat lacking the Ring and zinc finger domains and that of the kinase-inactive mutant NIK. Taken together, our study suggests that the presence of intact TRAF6 and the kiase activity of NIK may be essential for TR8 to induce NF-$textsc{k}$B activation.

  • PDF

TAK1-dependent Activation of AP-1 and c-Jun N-terminal Kinase by Receptor Activator of NF-κB

  • Lee, Soo-Woong;Han, Sang-In;Kim, Hong-Hee;Lee, Zang-Hee
    • BMB Reports
    • /
    • 제35권4호
    • /
    • pp.371-376
    • /
    • 2002
  • The receptor activator of nuclear factor kappa B (RANK) is a member of the tumor necrosis factor (TNF) receptor superfamily. It plays a critical role in osteoclast differentiaion, lymph node organogenesis, and mammary gland development. The stimulation of RANK causes the activation of transcription factors NF-${\kappa}B$ and activator protein 1 (AP1), and the mitogen activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK). In the signal transduction of RANK, the recruitment of the adaptor molecules, TNF receptor-associated factors (TRAFs), is and initial cytoplasmic event. Recently, the association of the MAPK kinase kinase, transforming growth factor-$\beta$-activated kinase 1 (TAK1), with TRAF6 was shown to mediate the IL-1 signaling to NF-${\kappa}B$ and JNK. We investigated whether or not TAK1 plays a role in RANK signaling. A dominant-negative form of TAK1 was discovered to abolish the RANK-induced activation of AP1 and JNK. The AP1 activation by TRAF2, TRAF5, and TRAF6 was also greatly suppressed by the dominant-negative TAK1. the inhibitory effect of the TAK1 mutant on RANK-and TRAF-induced NF-${\kappa}B$ activation was also observed, but less efficiently. Our findings indicate that TAK1 is involved in the MAPK cascade and NF-${\kappa}B$ pathway that is activated by RANK.

TNF 신호전달에서 RIPK와 MLKL의 기능적 생리적 특성 (Functional and Physiological Characteristic of RIPK and MLKL in TNF Signaling)

  • 박영훈;정미숙;장세복
    • 생명과학회지
    • /
    • 제26권7호
    • /
    • pp.868-874
    • /
    • 2016
  • 수용체 상호작용 단백질 인산화 효소 RIPK1 (Receptor-interacting protein kinases 1)과 RIPK3은 고도로 보존된 인산화 효소 부위를 통하여 세린이나 트레오닌의 하이드록실기를 인산화하는 세린 또는 트레오닌-단백질 인산화 효소 군에 속한다. RIPK군은 염증이나 선천성 면역뿐 만 아니라 세포사멸이나 괴사와 같은 프로그램화된 세포사 멸을 중재하는데 중요한 역할을 담당한다. RIPK1과 다른 TNFR1 관련 단백질들의 상호작용은 TNF 수용체 1(TNFR1)에 사이토카인이 결합할 때 생존 촉진 전사인자 NF-κB의 활성을 조절하는 신호전달복합체 I을 조립하는 것으로 알려져 왔다. 뿐만 아니라, RIPK1과 RIPK3은 프로그램화된 세포괴사를 중재하는 RIP 동형 상호작용 모티브(RHIM)를 통하여 상호작용하고, 이러한 괴사는 세포사멸의 유형과는 다른 형태학적 특징을 가진 돌발적이고 제어되지 않는 세포사멸 유형으로 오랫동안 알려져 왔다. RIPK1과 RIPK3에 존재하는 RHIM의 고도로 보존된 서열들이 이들의 상호작용을 조절하며 이들은 necrosome이라 불리는 세포질 내 아밀로이드 복합체의 조립을 유도 한다. 또한 necrosome은 최근에 하위 신호전달을 조절하는 RIPK3의 기질로 확인된 혼합형 인산화 효소 도메인-유사 단백질(MLKL)을 포함한다. 본 리뷰는 TNF 신호전달에서 RIPK와 MLKL의 기능적, 생리적 특징들에 관한 개요를 제공한다.

Folic acid supplementation regulates key immunity-associated genes and pathways during the periparturient period in dairy cows

  • Khan, Muhammad Zahoor;Zhang, Zhichao;Liu, Lei;Wang, Di;Mi, Siyuan;Liu, Xueqin;Liu, Gang;Guo, Gang;Li, Xizhi;Wang, Yachun;Yu, Ying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권9호
    • /
    • pp.1507-1519
    • /
    • 2020
  • Objective: The current research was aimed to profile the transcriptomic picture of the peripheral blood lymphocytes (PBLs) associated with immunity in Chinese Holsteins supplemented orally with coated folic acid during the periparturient period. Methods: The total of 123 perinatal cows were selected for this study and divided into three groups; group A (n = 41, 240 mg/500 kg cow/d), group B (n = 40, 120 mg/500 kg cow/d) and group C (n = 42, 0 mg/cow/d) based on the quantity of folic acid fed. Three samples of PBLs were selected from each folic acid treated group (high, low, and control) and RNA sequencing method was carried out for transcriptomic analysis. Results: The analysis revealed that a higher number of genes and pathways were regulated in response to high and low folic acid supplementation compared to the controls. We reported the novel pathways tumor necrosis factor (TNF) signaling, antigen processing and presentation, Staphylococcus aureus infection and nuclear factor (NF)-kappa B signaling pathways) and the key genes (e.g. C-X-C motif chemokine ligand 10, TNF receptor superfamily member 1A, cluster difference 4, major histocompatibility complex, class II, DQ beta, NF-kappa-B inhibitor alpha, and TNF superfamily 13) having great importance in immunity and anti-inflammation in the periparturient cows in response to coated folic acid treatment. Conclusion: Collectively, our study profiled first-time transcriptomic analysis of bovine lymphocytes and compared the involved cytokines, genes, and pathways between high vs control and low vs control. Our data suggest that the low folic acid supplementation (120 mg/500 kg) could be a good choice to boost appropriate immunity and anti-inflammation as well as might being applied to the health improvement of perinatal dairy cows.

Apoptosis의 외인성 경로에서 caspase-8의 구조적 및 기능적 역할 (Structural and Functional Roles of Caspase-8 in Extrinsic Apoptosis)

  • 하민선;정미숙;장세복
    • 생명과학회지
    • /
    • 제31권10호
    • /
    • pp.954-959
    • /
    • 2021
  • 세포 사멸은 항상성을 유지하기 위해 세포군을 조절하는 중요한 메커니즘이며 시스테인 단백질분해효소 중 하나인 카스파제는 세포 사멸 경로의 중요한 중재자이다. Caspase-8은 세포외 자극에 의해 시작되는 외인성 세포자멸 경로의 개시자 카스파제이다. Caspase-8에는 보존된 도메인인 N-말단의 두개의 죽음 이펙터 도메인(DED)과 C-말단의 2개의 촉매 도메인을 가지며, 이는 이러한 외인성 세포자멸 경로에 중요하게 작용한다. 외인성 세포멸사 경로에서, TNF 슈퍼패밀리인 죽음 수용체는 세포 외부로부터의 죽음 수용체 특이적 리간드의 결합에 의해 활성화된다. 활성화된 죽음 수용체가 어댑터 단백질인 Fas-associated death domain 단백질(FADD)을 모집한 후, 죽음 수용체와 FADD의 죽음 도메인(DD)이 서로 결합하고 죽음 수용체와 결합한 FADD가 caspase-8의 전구체 형태인 procaspase-8을 모집한다. FADD와 procaspase-8의 죽음 이펙터 도메인은 서로 결합하고 FADD에 결합된 procaspase-8은 prodomain의 절단에 의해 활성화된다. 이 죽음 수용체-FADD-caspase-8 복합체는 세포사멸 유도 신호복합체(DISC)라고 한다. 세포 FLICE 억제 단백질(c-FLIPs)은 세포사멸을 억제하는 역할과 촉진하는 역할을 모두 수행하여 caspase-8의 활성화를 조절하고 caspase-8 활성화는 caspase-3와 같은 작동자 카스파제를 활성화를 시킨다. 마지막으로 활성화된 작동자 카스파제는 DNA 분해, 핵 응축, 세포막 수포 및 카스파제 기질의 단백질 분해에 작용하여 세포사멸을 완료한다.

Anti-CD137 mAb Deletes Both Donor $CD4^+$ and $CD8^+$ T Cells in Acute Graft-versus-host Disease

  • Kim, Ju-Yang;Cho, Hong-Rae;Kwon, Byung-Suk
    • IMMUNE NETWORK
    • /
    • 제11권6호
    • /
    • pp.428-430
    • /
    • 2011
  • We previously demonstrated that in vivo engagement of CD137, a member of TNF receptor superfamily, can delete allorective $CD4^+$ T cells through the induction of activation-induced cell death (AICD) in chronic graft-versus-host disease (cGVHD) and subsequently reverse established cGVHD. In this study, we further showed that agonistic anti-CD137 mAb was highly effective in triggering AICD of donor $CD8^+$ T cells as well as donor $CD4^+$ T cells in the $C57BL/6{\rightarrow}unirradiated$ $(C57BL/6\;{\times}\;DBA/2)F1$ acute GVHD model. Our results suggest that strong allostimulation should facilitate AICD of both alloreactive $CD4^+$ and $CD8^+$ T cells induced by CD137 stimulation. Therefore, depletion of pathogenic T cells using agonistic anti-CD137 mAb combined with potent TCR stimulation may be used to block autoimmune or inflammatory diseases mediated by T cells.

Single Cell Transcriptomic Re-analysis of Immune Cells in Bronchoalveolar Lavage Fluids Reveals the Correlation of B Cell Characteristics and Disease Severity of Patients with SARS-CoV-2 Infection

  • Chae Won Kim;Ji Eun Oh;Heung Kyu Lee
    • IMMUNE NETWORK
    • /
    • 제21권1호
    • /
    • pp.10.1-10.13
    • /
    • 2021
  • The coronavirus disease 2019 (COVID-19) pandemic (severe acute respiratory syndrome coronavirus 2) is a global infectious disease with rapid spread. Some patients have severe symptoms and clinical signs caused by an excessive inflammatory response, which increases the risk of mortality. In this study, we reanalyzed scRNA-seq data of cells from bronchoalveolar lavage fluids of patients with COVID-19 with mild and severe symptoms, focusing on Ab-producing cells. In patients with severe disease, B cells seemed to be more activated and expressed more immunoglobulin genes compared with cells from patients with mild disease, and macrophages expressed higher levels of the TNF superfamily member B-cell activating factor but not of APRIL (a proliferation-inducing ligand). In addition, macrophages from patients with severe disease had increased pro-inflammatory features and pathways associated with Fc receptor-mediated signaling, compared with patients with mild disease. CCR2-positive plasma cells accumulated in patients with severe disease, probably because of increased CCL2 expression on macrophages from patients with severe disease. Together, these results support the hypothesis that different characteristics of B cells might be associated with the severity of COVID-19 infection.