• Title/Summary/Keyword: TMDL evaluation

Search Result 31, Processing Time 0.022 seconds

Development of Load Duration Curve Methodology for TMDL Evaluation (오염총량평가를 위한 부하지속곡선 개발 및 적용)

  • Kang, Du-Kee;Kang, Soon-Ku;Kim, Sang-Dan;Shin, Hyun-Suk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.652-656
    • /
    • 2007
  • The major streams in South Korea have established the TMDL(Total Maximum Daily Loads) regulation for just 4 years. Traditional concepts in water quality management in South Korea are based upon the selection of a design streram flow which is 10-year averged flow exeedance probability 75%(Q275). That is, a single flow value based upon average long term flow conditions is chosen for application in dilution calculations, permit design, water quality modeling, etc. While these TMDLs seems to satisfy the requirement of the target water quality regulations, they have contributed little to any watershed/waterbody assessment and restoration plans. These types of TMDLs do little to characterize the problems the TMDLs are intended to address. For TMDLs to be more beneficial in the assessment and implementation process, TMDLs should reflect adequate water quality across flow conditions rather than at a single flow value such as average daily flow. In this paper, we developed LDC (load duration curve) methodology for theevaluation of Korean TMDL evaluation based on watershed scaled, physically based on SWAT(Soil and Water Assessment Tool) model.

  • PDF

Effects of the Voluntary Scheme of Total Maximum Daily Load based on Water Quality and Annual Evaluation data in the Gyeongan Watershed, South Korea (경안천 유역 수질 및 이행평가 자료를 통한 임의적 오염총량관리제도 시행의 성과 분석)

  • Lee, Bum-Yeon;Lee, Chang-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.4
    • /
    • pp.263-274
    • /
    • 2021
  • This study presents the achievements and limitations of the voluntary-based Total Maximum Daily Load (TMDL) through statistical analysis of water quality monitoring data and performance assessments of TMDL plans implemented in the Gyeongan watershed. The results clearly showed that responsible local governments complied the allocated TMDL and the designated water quality goals were successfully achieved in the required period. This was possible because the Ministry of Environment provided innovative incentives, such as, relaxations of the existing tight land-use regulations and full-scale financial aids for constructing and operating public treatment facilities to draw local government voluntary participation. However, a couple of problems which decreased the effectiveness and efficiency of the voluntary TMDL were identified. The different TMDL implementation schedules between upstream (Yongin) and downstream (Gwangju) governments caused delay in water quality improvement and exaggerated TMDL allocation to the local development which made excessive investment in the treatment facilities. Although it is not directly related to the voluntary scheme, technical methods for establishing and assessing the water quality goals should be improved so that the effects of flow conditions on water quality are properly assessed. We expect that results of this case study contribute to developing a more effective voluntary-based scheme for the implementation of the so-called 'tributary TMDL' in the future.

Research on the Evaluation of Impaired Waterbody using the Flowrate Group at TMDL Unit Watershed in Nakdong River Basin (수질오염총량관리 단위유역 유량그룹별 수체 손상 분석)

  • Hwang, Ha-Sun;Kim, Sang-Soo;Kim, Jin-Lee;Park, Bae-Kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.933-942
    • /
    • 2012
  • The purpose of this study is to evaluate the degree of waterbody impairment according to the flow conditions and present to the appropriate water quality improvement alternatives using observed water quality and flow for Total Maximum Daily Load (TMDL) implementation at 39 unit watersheds the nakdong river basin. Observed water quality data for 7 years are divided into five cumulative flow frequency group and comparing the each observed water quality data and TMDL Target water quality (TWQ) the last evaluate the water quality is impaired group. We found that the cumulative flow frequency group-specific the average excess rate of V group was the highest (32.86%), followed by the IV group (26.04%), group III (23.36%), II group (22.67%), I group (20.70%), the degree of impaired waterbody tended to be inversely proportional to the flow rate. Resulted from cumulative flow frequency group of impaired water quality assessment, 13 unit watersheds are impaired from a group IV and group V affected by point sources. Therefore, improvement of sewage discharge and the initial composition of the riparian buffer zone are needed. Nakbon F, Namkang D and Namkang E within 13 unit watersheds are impaired from group II and III affected by non-point sources. Therefore, application of Best Management Practices (BMPs) is needed for these watersheds. Evaluation of impaired waterbody using Cumulative flow frequency group is able to determine the extent of the judgment to TWQ exceeded by the flow conditions and helps proper setting Standard flow and planning pollutant reduction for TMDL.

A Study on the Water Quality Improvement of Major Tributaries in Seoul, Applying Watershed Evaluation Techniques (총량관리 단위유역 평가기법을 활용한 서울특별시 주요 유입 지천의 수질개선효과에 관한 연구)

  • Shim, Kyuhyun;Kim, Gyeonghoon;Im, Taehyo;Kim, Youngseok;Kim, Seongmin
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.1
    • /
    • pp.32-46
    • /
    • 2021
  • South Korea has been divided into quantities and water quality, and due to a revision of the Government Organization law in June 2018, the controversial water management system was integrated into the Ministry of Environment. The total Maximum Daily Loads System has been called the flower of water quality control, and since 2004, all three major river systems which have been introduced into the Han River system, despite its various difficult environments, and subsequently leading to all of the four major rivers undergoing obligatory implementation since 2013. Currently, the target TMDL (Han River Phase 1 and Other Water Systems Phase 3) for the 2020 stage has been implemented. The domestic TMDL established a basic plan for calculating the load which complies with the unit watershed's target water quality, as well as an implementation plan for annual load management, both which have been institutionalized in order to evaluate load compliance on a repeated annual basis. Local governments ask external organizations to conduct investigations every year in order to assess the transition, which thereby requires tens of millions of won every year. Therefore, an assessment and management model that can be easily operated at the TMDL personnel level is required. In this study, when the Han river Water System TMDL was implemented in earnest, we confirmed the the water quality improvement effect when TMDL was introduced to major inflow tributaries (TancheonA, JungnangA, AnyangA) under the Seoul City's jurisdiction through the use of the total amount control unit basin evaluation technique. By presenting customized management measures, we propose the guidelines that are necessary for determining more effective water environmental policies.

TMDL Evaluation of Nakdong River Basin Using Load Duration Curve and Streamflow-Load Rating Curve (부하지속곡선과 유량-부하량 상관곡선을 이용한 낙동강 유역의 오염총량평가)

  • Shon, Tae Seok;Joo, Jae Seung;Park, Jae Beom;Shin, Hyun Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.475-481
    • /
    • 2011
  • The TMDL standard flow as applying watershed management regime uses the average low flow of past 10 years. Moreover, the TMDL implementation assessment has been enforced through management of pollutant load satisfied objective water quality. Even though the present allocation and management through averaged low flow are still convenient, they are not enough to solve ultimate goals of watershed management to keep up recovery of water body. To maintain the same water quality concentration, the standard flow is required to consider total discharge in management plan which helps to keep healthy ecosystem. In view of this, it would be possible to approach reasonable assessment by reflecting variably changeable discharge from precipitation-streamflow relation and the TMDL standard establishment considering artificial regulated flow. Therefore, this study attempts to develop the TMDL method using Load Duration Curve (LDC) and Streamflow-Load Rating Curve (QLRC) considering total discharge and finds drawbacks with solutions as applying on Nakdong river TMDL unit watershed. Finally, this research evaluates possibility of application on pollutant load allocating and implementation assessment in Korea.

Application of Web-based Load Duration Curve System to TMDL Watersheds for Evaluation of Water Quality and Pollutant Loads (수질오염총량제도 유역의 수질 및 부하량 평가를 위한 웹기반 LDC 시스템의 적용)

  • Kang, Hyunwoo;Ryu, Jichul;Shin, Minhwan;Choi, Joongdae;Choi, Jaewan;Shin, Dong Seok;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.689-698
    • /
    • 2011
  • In South Korea, Total Maximum Daily Load (TMDL) has been enforced since 2004 to restore and manage water quality in the watersheds. However, the appraisal of TMDL in South Korea has lots of weaknesses to establish the plan for recovery of water quality because it just evaluates the target water quality during the particular flow duration interval. In the United States, Load Duration Curve (LDC) method bas been widely used in the TMDL to evaluate the water quality and pollutant loads considering variation of stream flow. In a recent study, web-based Load Duration Curve system was developed to create the LDC automatically and provide the convenience of use. In this study, web-based Load Duration Curve system was applied in the Gapyeongcheon watershed using the daily flow and 8-day interval water quality data, and Q-L Rating Curve was used to evaluate the water quality and pollutant load in the watershed, also. As a result of study, water quality and pollutant load in Gapyeongcheon watershed were met with water quality standard and allocated load in the all flow durations. Web-based Load Duration Curve system could be applied to the appraisal of South Korean TMDL because it can be used to judge the impaired flow duration and build up the plan of load reduction, and it could enhance the publicity. But, web-based Load Duration Curve system should be enhanced through addition of load assessment tools such as Q-L rating curve to evaluate water quality and pollutant load objectively.

Application Load Duration Curve for Evaluation of Impaired Watershed at TMDL Unit Watershed in Korea (수질오염총량 단위유역의 유량조건별 수체 손상 평가를 위한 부하지속곡선 적용성 연구)

  • Hwang, Ha-Sun;Yoon, Chun-Gyeong;Kim, Ji-Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.903-909
    • /
    • 2010
  • The purpose of this study was evaluated on the applicability of Load Duration Curve Method (LDC Method) using HSPF watershed model and sampling data for efficient TMDLs in Korea. The LDC Method was used for assessment pollutant characteristics in watershed and water quality variation in each water flow level. Load Duration Curve is applied for judge the level of impaired water-body and can be estimated the impaired level by pollutant, such as BOD, T-N, and T-P in this study depending on variation of stream flow. As a result, BOD, T-P was usually exceed the standard value at low flow and dry hydrologic period. Improvement of effluent concentration from WWTP and riparian buffer protection zone are effective to improve the water quality. T-N showed the worst condition at mid-range hydrologic period and moist hydrologic period. Therefore, soil erosion control program and BMPs for non-point source pollution control is effective for recovery the water quality, which can be useful method for management of water quality in the plan of recovery water quality spontaneously. Applicability of LDC Method was evaluated in the Nakbon A watershed. However, we need to consider more detailed and accumulated data set such as accurate GIS data and detail pollution data, and WWTP discharge water quality data for accurate evaluation of watershed. Overall, The LDC Method is adequate for evaluation of watersheds characteristics, and its application is recommended for watershed management and TMDL Implementation.

LIDMOD2 Development for Evaluation of LID/BMPs (LID/BMPs 효과분석을 위한 LIDMOD2 개발)

  • Jeon, Ji-Hong;Choi, Donghyuk;Na, Eun Hye;Park, Chan-Gi;Kim, Tae-Dong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.432-438
    • /
    • 2010
  • LIDMOD2 was developed for evaluation of low impact development (LID) and best management practice (BMP) by modification of Site Evaluation Tool (SET). The modification includes employment of SCS-CN method for annual runoff simulation, unit load method for annual pollutant loads simulation, and the method proposed by Korean TMDL for calculating pollutant reduction by BMPs. The CN values were updated with regionalized parameters within Nack-Dong River basin because these are important parameters for simulating hydrology. LIDMOD2 was tested by applying to Andong Bus terminal. As a simulation results, pollutant loads and surface runoff will be significantly increased by post-development without LID compared with those from pre-development. LID technique was simulated to efficiently reduce surface runoff and pollutant load and increase infiltration. LIDMOD2 is screening level tool and easy to use because LIDMOD2 is based on spread sheet and most of parameters are regionalized. LIDMOD2 was illustrate that it could evaluate LID well by summarizing and graphing annual hydrology, annual pollutant loading, and hydrograph for event storm. The calculation methods related with pollutant loads are employed from the guideline of Korean TMDL and it can be useful tool for Korean TMDL to evaluate the effect of LID/BMP on developing area.

Development of Long Term Flow Duration Curves for the Management of Total Maximum Daily Loads - in the Nakdong River Basin - (수질오염총량관리 단위유역 장기유황곡선 구축 -낙동강수계를 대상으로-)

  • Kim, Gyeong hoon;Kwon, Heon gak;Ahn, Jung min;Kim, Sanghun;Im, Tae hyo;Shin, Dong seok;Jung, Kang-Young
    • Journal of Environmental Science International
    • /
    • v.26 no.8
    • /
    • pp.939-953
    • /
    • 2017
  • For the development of flow duration curves for the management of 41 Total Maximum Daily Load (TMDL) units of the Nakdong River basin, first, an equation for estimating daily flow rates as well as the level of correlation (correlation and determination coefficients) was extrapolated through regression analysis of discrete (Ministry of Environment) and continuous (Ministry of Land, Infrastructure and Transportation) measurement data. The equation derived from the analysis was used to estimate daily flow rates in order to develop flow duration curves for each TMDL unit. By using the equation, the annual flow duration curves and flow curves, for the entire period and for each TMDL unit of the basin, were developed to be demonstrated in this research. Standard flow rates (abundant-, ordinary-, low- and drought flows) for major flow duration periods were calculated based on the annual flow duration curves. Then, the flow rates, based on percentile ranks of exceedance probabilities (5, 25, 50, 75, and 95%), were calculated according to the flow duration curves for the entire period and are suggested in this research. These results can be used for feasibility assessment of the set values of primary and secondary standard flow rates for each river system, which are derived from complicated models. In addition, they will also be useful for the process of implementing TMDL management, including evaluation of the target level of water purity based on load duration curves.

Evaluation on Actual Discharge Data for TMDL in Nakdong River Basin (낙동강수계 수질오염총량관리를 위한 유량조사 평가)

  • Kim, Gyeong-Hoon;Kim, Yong-Seok;Park, Bae-Kyung;Yoon, Jong-Su;Shin, Chan-Ki
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.4
    • /
    • pp.65-71
    • /
    • 2008
  • To drive efficiently total water pollution load management, needs to calculate the exact load emissions, pollution load allocation and implementation evaluation in each unit area of watershed and accurate and regular flow of data. For these reasons, the Nakdong River TMDL Research Center has produced directly or indirectly in the average interval of eight days (30 times or more / year) 41 points for unit area of the total water pollution load management and 8-point of municipal requirement for a total of 49 branches as a flow data in 2004 from August. This acquired the survey flow is evidence of trends and changes each point in the Nakdong River based on time, such as 10 years based on average design flow available to the foundation of the summit as the major water policy is to be utilized. This study was performed on actual discharge measuring data and introduced performance results each drainage basin of Nakdong River from 2004 to 2008 over the total of past five years.