• 제목/요약/키워드: TMCP steel

검색결과 96건 처리시간 0.021초

TMCP강의 습식수중 아크용접부의 냉각특성 개선에 관한 연구 (Study on Cooling Characteristic Improvement in Underwater Wet Arc Welding of TMCP Steelplate)

  • 김민남
    • 한국해양공학회지
    • /
    • 제6권2호
    • /
    • pp.113-124
    • /
    • 1992
  • The offshore industry created a need for quality wet weld repairs. Wet welding is a fast method of repair providing sound, structural quality welds. It requires less support equipment than a similar underwater dry weld repair or the alternative mechanical connections. Compared to welds made in air, underwater wet welds are plagued by increased hardness due to rapid quenching by the surrounding water. In this paper is described the experimntal study of improving the cooling rates of wet welds of TMCP steel plate by shielding around weld arc surroundings. The principal results of this experimental investigation can be summarized as follows : By shielding around weld arc surrounding, the cooling rates resulting from wet welds on TMCP steel plate could be lower than that of nonshielded wet welds and the fesibility on high quality of mecanical properties of wet weld on TMCP steel plate was carried out with shielded weld arc surrounding.

  • PDF

해양구조물용 TMCP강의 피로균열진전거동에 미치는 용접이방성 및 과대하중의 영향 (The effect of the excessive loading and welding anisotropy on the fatigue crack propagation behavior of TMCP steel for offshore structure)

  • 최성대;이종형
    • 한국생산제조학회지
    • /
    • 제9권6호
    • /
    • pp.82-88
    • /
    • 2000
  • The effect of the welding for the offshore structure in the TMCP steel on the fatigue crack propagation rate and crack opening-and-closure behavior was examined. The welding anisotropy of the TMCP steel and crack propagation characteristics of the excessive loading were reviewed. (1) It seemed that a heat which was generated by the welding made a compressive residual stress over the base metal, so fatigue crack propagation rate was placed lower than in case of the base metal. (20 In the base metal, an effect of the anisotropy which has an effect of fatigue crack propagation rate of the excessive load and the constant amplitude laos was not found but in the welding material case, fatigue crack propagation rate of the excessive load in the specimen of the width direction was located in the retard side as compared with a specimen rolling direction. (3) A crack opening ratio of the used TMCP stel in this study was not changed after excessive loading but a retard phenomenon of crack propagation was observed. Consequently, it was thought that all of the retard phenomenon of crack propagation did not only a cause of the crack opening-and-closure phenomenon.

  • PDF

TMCP강의 습식수중 아크 용접성에 관한 고찰 (A study on the weldability of TMCP steel plates in underwater wet arc welding)

  • 오세규;김민남
    • Journal of Welding and Joining
    • /
    • 제5권4호
    • /
    • pp.28-35
    • /
    • 1987
  • The feasibility of underwater wet arc welding process is experimentally investigated by using high titanium oxide type electrodes and TMCP steel plates as base metal. It is assertained the tis process may be put to practical use. Main results are summarized as follows; (1) Sound underwater weld can be obtained by skilled welding operator, if proper welding conditions are selected. (2) In underwater wet arc welding process, the mechanical properties of HAZ are depend upon welding condition and the optimum welding condition can obtained. (3) The maximum hardness in the HAZ of TMCP steel plates is increased significantly in this welding process.

  • PDF

SM490-TMC 강재를 적용한 기둥부재 이력거동의 특성 (Hysteretic Behavior Characteristics of SM490-TMC Steel Column)

  • 장경호;장갑철
    • 대한토목학회논문집
    • /
    • 제26권5A호
    • /
    • pp.833-840
    • /
    • 2006
  • TMCP 강재를 적용한 기둥부재의 정확한 내진설계를 위해서는 반복하중 작용시 기둥부재에 발생하는 이력거동의 특성을 명확히 파악해야 한다. 이러한 이력거동을 정확히 예측하기 위해서는 반복하중 작용시 TMCP 강재의 역학적 특성 및 응력-변형률 관계를 구현할 수 있는 반복소성모델이 필요하다. 본 연구에서는 먼저 단조 및 반복하중실험에 기초하여 SM490 및 SM490-TMC 강재의 반복소성모델을 정식화하였으며 이를 3차원 탄소성 유한요소해석에 적용하였다. 수치해석을 통하여 SM490-TMC 강재를 적용한 원형과 H형 기둥부재의 이력거동의 특성을 파악하였다. 또한 해석결과를 SM490강재가 적용된 기둥부재의 해석결과와 비교하여 SM490-TMC 강재가 원형 및 H형 기둥부재의 이력거동에 미치는 영향을 명확히 하였다.

TMCP 고장력강 용접부의 피로 특성에 관한 연구 (Fatigue properties of welded joints for TMCP steels)

  • 임채범;권영각;엄기원
    • Journal of Welding and Joining
    • /
    • 제8권2호
    • /
    • pp.40-52
    • /
    • 1990
  • Fatigue behavior of the AH, DH and EH grade TMCP(Thermo-Mechanical Control Process) steels was studied. High cycle and low cycle fatigue tests were carried out for the weldment and base metal of each steel. The results showed that the fatigue limit at 2 * $10^6$ cycles was 33 to 37 kg/$mm^2$ for the base metal and 30 to 34 kg/$mm^2$ for the weldment. The ratio of fatigue limit to tensile strength for TMCP steels was 0.65 to 0.71, which was a value close to the upper limit for the ordinary steels. It was also found that the high cycle fatigue behavior of TMCP steels could be affected by the microstructures of base metal. It will be necessary to have fine structure for TMCP steels to increase the fatigue resistance. In low cycle fatigue test, the fatigue lifetime of AH and DH steels accorded well with the ASME best fit curve, while that of EH steel was considerably lower than the fatigue lifetime of the other steels. Fatigue resistance of the weldment made by high heat input(180kJ/cm) welding was not lower than that made by low heat input(80kJ/cm) welding in case of high cycle fatigue, but the high heat input welding decreased the fatigue resistance in case of low cycle fatigue.

  • PDF

SM490A TMC 후판강재의 소재 및 용접부 특성에 관한 연구 (A Study on Structural Characteristics of SM490A TMC Thick Steel Plates)

  • 김종락;박양희
    • 한국강구조학회 논문집
    • /
    • 제15권3호
    • /
    • pp.331-339
    • /
    • 2003
  • Thermo Mechanical Control Process(TMCP) 강재는 열간압연시에 압연 온도를 제어하면서 경우에 따라 압연직후 냉각, 열처리하여 안정된 조직으로 압연, 제조된 강재이다. 본 연구에서는 극후판 TMCP강재의 소재특성과 건축구조용 강재로서의 적합성과 특성을 밝히기 위하여 화학성분 및 조직특성, 내력 및 기계적 특성, 사용성 및 인성, 등으로 분류하여 소재특성과 용접특성을 분석하였다. 실험결과, 대상강재는 극후판에서도 설계기준강도를 만족하고 낮은 탄소당량 ($C_{eq}$) 및 용접갈라짐 감수성조성($P_cm$)과 저항복비 등이 확보되었다. 또한, 기준온도(${\pm}0^{\circ}C$)는 물론 $-60^{\circ}C$의 극저온에서도 충분한 충격흡수에너지값으로 양호한 인성의 소재특성을 나타냈고, 용접부에서도 경화현상이 저감되고, 용접부의 인성 및 내력이 충분한 것으로 나타났다.