• 제목/요약/키워드: TM5-1300

검색결과 4건 처리시간 0.022초

Landsat 영상을 이용한 태풍 RUSA 침수피해지역 분석기법 연구 (Method Development of Flood Damaged Area Detection by Typhoon RUSA using Landsat Images)

  • 이미선;박근애;박민지;신형진;김성준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.1300-1304
    • /
    • 2004
  • This study is to present a method of flood damaged area detection by the typhoon RUSA (August 31 - September 1, 2002) using Landsat 7 ETM+ and Landsat 5 TM images. Two images of Sept. 29, 2000 and Sept. 11, 2002 (path 115, row 34) were prepared for Gangreung, To identify the damaged areas, firstly, the NDVI (Normalized Difference Vegetation Index) of each image was computed, secondly, the NDVI values were reclassified as two categories that the negative index values including zero are the one and the positive index values are the other, thirdly the reclassified image before typhoon is subtracted from the reclassified image after typhoon to get DNDVI (Differential NDVI). Some part of urban and agricultural were classified into damaged area due to typhoon RUSA in Gangreung, $18.8km^2$ and $17.7km^2$ respectively.

  • PDF

Application of Arbitrary Lagrangian-Eulerian Technique for Air Explosion Structural Analysis for Naval Ships Using LS-DYNA

  • Kim Jae-Hyun;Shin Hyung-Cheol;Park Myung-Kyu
    • Journal of Ship and Ocean Technology
    • /
    • 제9권1호
    • /
    • pp.38-46
    • /
    • 2005
  • Survivability improvement method for naval ship design has been continually developed. In order to design naval ships considering survivability, it is demanded that designers should establish reasonable damage conditions by air explosion. Explosion may induce local damage as well as global collapse to the ship. Therefore possible damage conditions should be realistically estimated in the design stage. In this study the authors used ALE technique, one of the structure-fluid interaction techniques, to simulate air explosion and investigated survival capability of damaged naval ships. Lagrangian-Eulerian coupling algorithm, equation of the state for explosive and air, and simple calculation method for explosive loading were also reviewed. It is shown that air explosion analysis using ALE technique can evaluate structural damage after being attacked. This procedure can be applied to the real structural design quantitatively by calculating surviving time and probability.

LED와 플라즈마 광원의 완속기시 광중합 방식이 복합레진의 수축응력에 미치는 영향 (EFFECT OF SOFT-START CURING ON THE CONTRACTION STRESS OF COMPOSITE RESIN RESTORATION POLYMERIZED WITH LED AND PLASMA CURING UNIT)

  • 정양석;이난영;이상호
    • 대한소아치과학회지
    • /
    • 제34권4호
    • /
    • pp.623-631
    • /
    • 2007
  • 본 연구는 LED와 플라즈마 광원의 복합레진의 중합시 완속기시 중합방식(soft-start curing)이 수축응력에 미치는 효과를 비교, 평가하고자 하였다. 할로겐 광원으로 40초간 조사하여 복합레진을 중합한 경우와 LED와 플라즈마 광원의 단일광도 중합방식과 완속기시 중합방식으로 할로겐 40초 동안의 광에너지와 총량이 동일하도록 조사시간을 설정하였고 수축응력은 스트레인 게이지(Strain gauge)를 사용하여 측정하였다. 발생되는 수축응력을 비교, 분석 및 평가한 결과 다음과 같은 결론을 얻었다. 1. 모든 군에서 중합 후 200초까지 수축응력이 급격하게 증가하였으나 이후 마지막 측정시간인 800초까지 완만한 증가를 보였다(P<0.05). 2. LED와 플라즈마 광원의 완속기시 중합방법이 단일광도 중합방법에 비해 수축응력이 낮게 나타났다(P<0.05). 3. 할로겐 광원과 LED와 플라즈마 광원의 완속기시 중합의 수축응력 비교에는 유의차가 없었다(P>0.05). 완속기시 중합 방식을 사용할 경우 단일광도 중합 방식보다 수축응력을 감소시킬 수 있어 임상적으로 고광도 광원인 LED와 플라즈마 광원의 경우 완속기시 중합 방식의 사용이 유리하다고 보여진다. 그러나 완속기시 중합시 불충분한 중합을 방지하기 위해서는 완속기시를 보완하는 추가적인 중합시간이 요구될 것으로 사료된다.

  • PDF

무가압 분말충전 알루미나에 이트리아를 함유한 붕규산염 유리를 침투시킨 코아 도재의 물성 (THE PHYSCIAL PORPERTIES OFY Y2O3-CONTAINING GLASS INFILTRATED ALUMINA CORE MADE BY PRESSURELESS POWDER PACKING METHOD)

  • 황승우;이근우
    • 대한치과보철학회지
    • /
    • 제35권1호
    • /
    • pp.221-243
    • /
    • 1997
  • The objective of this study was to characterize the mechanical properties of $Y_{2}O_{3}$-containing glass infiltrated ceramic core material, which was made by pressureless powder packing method. A pure alumina powder with a grain size of about $4{\mu}m$ was packed without pressure is silicon mold to form a bar shaped sample, and applied PVA solution as a binder. Samples were sinterd at $1350^{\circ}C$ for 1 hour. After cooling, $Y_{2}O_{3}$-containing glass($SiO_{2},\;Y_{2}O_{3},\;B_{2}O_{3},\;Al_{2}O_{3}$, ect) was infiltrated to the sinterd samples at $1300^{\circ}C$ for 2 hours and cooled. Six different proportions $Y_{2}O_{3}$ of were used to know the effect of the mismatch of the thermal expansion coefficient between alumina powder and glass. The samples were ground to $3{\times}3{\times}30$ mm size and polished with $1{\mu}m$ diamond paste. Flexural strength, fracture toughness, hardness and other physical properties were obtained, and the fractured surface was examined with SEM and EPMA. Ten samples of each group were tested and compared with In-Ceram(tm) core materials of same size made in dental laboratory. The results were as follows : 1. The flexural strengths of group 1 and 3 were significantly not different with that of In-Ceram, but other experimental groups were lower than In-Ceram. 2. The shrinkage rate of samples was 0.42% after first firing, and 0.45% after glass infiltration. Total shrinkage rate was 0.87%. 3. After first firing, porosity rate of experimental groups was 50%, compared with 22.25% of In-Ceram. After glass infiltration, porosity rate of experimental groups was 2%, and 1% in In-Ceram. 4. There was no statistical difference in hardness between two materials tested, but in fracture toughness, group 2 and 3 were higher than In-Ceram. 5. The thermal expansion coefficients of experimental groups were varied to $4.51-5.35{\times}10^{-6}/^{\circ}C$ according to glass composition, also the flexural strengths of samples were varied. 6. In a view of SEM, many microparticles about $0.5{\mu}m$ diameter and $4{\mu}m$ diameter were observed in In-Ceram. But in experimental group, the size of most particles was about $4{\mu}m$, and a little microparticles was observed. The results obtained in this study showed that the mismatch of the thermal expansion coefficients between alumina powder and infiltrated glass affect the flexural strength of alumin/glass composite. The $Y_{2}O_{3}$-containing glass infiltrated ceramic core made by powder packing method will takes less time and cost with sufficient flexural strength similar to all ceramic crown made with slip casting technique.

  • PDF