• 제목/요약/키워드: TLSH

검색결과 1건 처리시간 0.014초

유사성 해시 기반 악성코드 유형 분류 기법 (Method of Similarity Hash-Based Malware Family Classification)

  • 김윤정;김문선;이만희
    • 정보보호학회논문지
    • /
    • 제32권5호
    • /
    • pp.945-954
    • /
    • 2022
  • 매년 수십억 건의 악성코드가 탐지되고 있지만, 이 중 신종 악성코드는 0.01%에 불과하다. 이러한 상황에 효과적인 악성코드 유형 분류 도구가 필요하지만, 선행 연구들은 복잡하고 방대한 양의 데이터 전처리 과정이 필요하여 많은 양의 악성코드를 신속하게 분석하기에는 한계가 있다. 이 문제를 해결하기 위해 본 논문은 유사성 해시를 기반으로 복잡한 데이터 전처리 과정 없이 악성코드의 유형을 분류하는 기법을 제안한다. 이 기법은 악성코드의 유사성 해시 정보를 바탕으로 XGBoost 모델을 학습하며, 평가를 위해 악성코드 분류 분야에 널리 활용되는 BIG-15 데이터셋을 사용했다. 평가 결과, 98.9%의 정확도로 악성코드를 분류했고, 3,432개의 일반 파일을 100% 정확도로 구분했다. 이 결과는 복잡한 전처리 과정 및 딥러닝 모델을 사용하는 대부분의 최신 연구들보다 우수하다. 따라서 제안한 접근법을 사용하면 보다 효율적인 악성코드 분류가 가능할 것으로 예상된다.