• 제목/요약/키워드: TLR6

검색결과 192건 처리시간 0.024초

MiR-182-5p Mediated by Exosomes Derived From Bone Marrow Mesenchymal Stem Cell Attenuates Inflammatory Responses by Targeting TLR4 in a Mouse Model of Myocardial Infraction

  • Chuang Sun;Wei Li;Yanhong Li;Jian Chen;Huixian An;Guangwei Zeng;Tingting Wang;Yazhou Guo;Changying Wang
    • IMMUNE NETWORK
    • /
    • 제22권6호
    • /
    • pp.49.1-49.15
    • /
    • 2022
  • Exosomes derived from mesenchymal stem cells (MSCs) could protect against myocardial infarction (MI). TLR4 is reported to play an important role in MI, while microRNA-182-5p (miR-182-5p) negatively regulates TLR4 expression. Therefore, we hypothesize that MSCs-derived exosomes overexpressing miR-182-5p may have beneficial effects on MI. We generated bone marrow mesenchymal stem cells (BM-MSCs) and overexpressed miR-182-5p in these cells for exosome isolation. H2O2-stimulated neonatal mouse ventricle myocytes (NMVMs) and MI mouse model were employed, which were subjected to exosome treatment. The expression of inflammatory factors, heart function, and TLR4 signaling pathway activation were monitored. It was found that miR-182-5p decreased TLR4 expression in BM-MSCs and NMVMs. Administration of exosomes overexpressing miR-182-5p to H2O2-stimulated NMVMs enhanced cell viability and suppressed the expression of inflammatory cytokines. In addition, they promoted heart function, suppressed inflammatory responses, and de-activated TLR4/NF-κB signaling pathway in MI mice. In conclusion, miR-182-5p transferred by the exosomes derived from BM-MSCs protected against MI-induced impairments by targeting TLR4.

Estudy the Effect of Breast Cancer on Tlr2 Expression in Nb4 Cell

  • Amirfakhri, Siamak;Salimi, Arsalan;Fernandez, Nelson
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권18호
    • /
    • pp.8445-8450
    • /
    • 2016
  • Background: Breast cancer is the most common neoplasm in women and the most frequent cause of death in those between 35 and 55 years of age. All multicellular organisms have an innate immune system, whereas the adaptive or 'acquired' immune system is restricted to vertebrates. This study focused on the effect of conditioned medium isolated from cultured breast cancer cells on NB4 neutrophil-like cells. Materials and Methods: In the current study neutrophil-like NB4 cells were incubated with MCF-7 cell-conditioned medium. After 6 h incubation the intracellular receptor TLR2, was analyzed. Results: The results revealed that MCF-7 cell-conditioned medium elicited expression of TLR2 in NB4 cells. Conclusions: This treatment would result in the production of particular stimulants (i.e. soluble cytokines), eliciting the expression of immune system receptors. Furthermore, the flow cytometry results demonstrated that MCF-7 cell-conditioned medium elicited an effect on TLR2 intracellular receptors.

6-Shogaol and 10-Shogaol Synergize Curcumin in Ameliorating Proinflammatory Mediators via the Modulation of TLR4/TRAF6/MAPK and NFκB Translocation

  • Xian Zhou;Ahmad Al-Khazaleh;Sualiha Afzal;Ming-Hui (Tim) Kao;Gerald Munch;Hans Wohlmuth;David Leach;Mitchell Low;Chun Guang Li
    • Biomolecules & Therapeutics
    • /
    • 제31권1호
    • /
    • pp.27-39
    • /
    • 2023
  • Extensive research supported the therapeutic potential of curcumin, a naturally occurring compound, as a promising cytokine-suppressive anti-inflammatory drug. This study aimed to investigate the synergistic anti-inflammatory and anti-cytokine activities by combining 6-shogaol and 10-shogaol to curcumin, and associated mechanisms in modulating lipopolysaccharides and interferon-γ-induced proinflammatory signaling pathways. Our results showed that the combination of 6-shogaol-10-shogaolcurcumin synergistically reduced the production of nitric oxide, inducible nitric oxide synthase, tumor necrosis factor and interlukin-6 in lipopolysaccharides and interferon-γ-induced RAW 264.7 and THP-1 cells assessed by the combination index model. 6-shogaol-10-shogaol-curcumin also showed greater inhibition of cytokine profiling compared to that of 6-shogaol-10-shogaol or curcumin alone. The synergistic anti-inflammatory activity was associated with supressed NFκB translocation and downregulated TLR4-TRAF6-MAPK signaling pathway. In addition, SC also inhibited microRNA-155 expression which may be relevant to the inhibited NFκB translocation. Although 6-shogaol-10-shogaol-curcumin synergistically increased Nrf2 activity, the anti-inflammatory mechanism appeared to be independent from the induction of Nrf2. 6-shogaol-10-shogaol-curcumin provides a more potent therapeutic agent than curcumin alone in synergistically inhibiting lipopolysaccharides and interferon-γ induced proinflammatory mediators and cytokine array in macrophages. The action was mediated by the downregulation of TLR4/TRAF6/MAPK pathway and NFκB translocation.

인삼열매로부터 분리한 Rhamnogalacturonan II 다당의 면역활성과 세포 내 신호전달 기작 규명 (Immunostimulatory activity and intracellular signaling pathways of a rhamnogalcaturonan II polysaccharide isolated from ginseng berry)

  • 차하영;손승우;신광순
    • 한국식품과학회지
    • /
    • 제53권6호
    • /
    • pp.722-730
    • /
    • 2021
  • 본 연구는 인삼열매로부터 RG-II 형태의 다당(GBW-II)을 분리하고 대식세포 활성화에 대한 세포 내 신호전달의 세부 기작을 규명함으로써 새로운 건강기능성식품 소재 개발을 위한 기초자료를 제시하고자 진행되었다. GBW-II의 구성당을 확인한 결과, 전형적인 RG-II의 구성당인 2-methyl-xylose, apiose, aceric acid, KDO 및 DHA와 같은 특이 구성당을 함유함을 확인할 수 있었다. GBW-II는 대식세포 유래 세포주인 RAW 264.7 cell에 처리하였을 경우, 어떠한 세포 독성도 확인되지 않았으나 IL-6와 TNF-α와 같은 cytokine의 분비는 농도 의존적으로 증가시키는 것으로 나타났다. 또한 RAW 264.7 cell을 이용한 세포 내 신호전달에 관한 실험 결과들을 종합해 볼 때, GBW-II는 대식세포 표면에 발현된 TLR2, TLR4 및 SR에 결합하여 MAPKs (p38, ERK) 및 NF-κB를 경유하여 IL-6와 TNF-α와 같은 cytokine의 분비를 증가시키는 것으로 최종 확인되었다. 한편, RG-I, RG-II, β-glucan, arabinoxylan 및 xyloglucan과 같은 식물체 유래 고분자 다당체의 약리활성은 그들의 구조적 차이에서 기원하는 것으로 알려져 있기 때문에 건강기능성식품 소재로의 개발을 위해서는 활성물질의 미세구조에 대한 해명이 필수적이라 할 수 있다. 따라서 본 연구진은 추후 연구에서 효소적 및 화학적 가수분해, methylation, sequencing 등을 이용하여 인삼열매 유래 정제 다당 GBW-II의 미세구조를 규명하고자 한다.

Expression of Various Pattern Recognition Receptors in Gingival Epithelial Cells

  • Shin, Ji-Eun;Ji, Suk;Choi, Young-Nim
    • International Journal of Oral Biology
    • /
    • 제33권3호
    • /
    • pp.77-82
    • /
    • 2008
  • Innate immune response is initiated by the recognition of unique microbial molecular patterns through pattern recognition receptors (PRRs). The purpose of this study is to dissect the expression of various PRRs in gingival epithelial cells of differentiated versus undifferentiated states. Differentiation of immortalized human gingival epithelial HOK-16B cells was induced by culture in the presence of high $Ca^{2+}$ at increased cell density. The expression levels of various PRRs in HOK-16B cells were examined by realtime reverse transcription polymerase chain reaction (RTPCR) and flow cytometry. In addition, the expression of human beta defensins (HBDs) was examined by real time RT-PCR and the amounts of secreted cytokines were measured by enzyme linked immunosorbent assay. In undifferentiated HOK-16B cells, NACHT-LRR-PYDcontaining protein (NALP) 2 was expressed most abundantly, and toll like receptor (TLR) 2, TLR4, nucleotide-binding oligomerization domain (NOD) 1, and NOD2 were expressed in substantial levels. However, TLR3, TLR7, TLR8, TLR9, ICE protease-activating factor (IPAF), and NALP6 were hardly expressed. In differentiated cells, the levels of NOD2, NALP2, and TLR4 were different from those in undifferentiated cells at RNA but not at protein levels. Interestingly, differentiated cells expressed the increased levels of HBD-1 and -3 but secreted reduced amount of IL-8. In conclusion, the repertoire of PRRs expressed by gingival epithelial cells is limited, and undifferentiated and differentiated cells express similar levels of PRRs.

CKD-712, (S)-1-(${\alpha}$-naphthylmethyl)-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, Inhibits the NF-${\kappa}B$ Activation and Augments Akt Activation during TLR4 Signaling

  • Lee, Jeong-Gi;Yang, Eun-Jeong;Shin, Jeon-Soo;Kim, Dal-Hyun;Lee, Sung-Sook;Choi, In-Hong
    • IMMUNE NETWORK
    • /
    • 제11권6호
    • /
    • pp.420-423
    • /
    • 2011
  • Since CKD-712 has been developed as an anti-inflammatory agent, we examined the effect of CKD-712 during TLR4 signaling. Using HEK293 cells expressing TLR4, CKD-712 was pre-treated 1 hr before LPS stimulation. Activation of NF-${\kappa}B$ was assessed by promoter assay. The activation of ERK, JNK, p38, IRF3 and Akt was measured by western blotting. CKD-712 inhibited the NF-${\kappa}B$ signaling triggered by LPS. The activation of ERK, JNK, p38 or IRF3 was not inhibited by CKD-712. On the contrary the activation of these molecules was augmented slightly. The activation of Akt with stimulation of LPS was also enhanced with CKD-712 pre-treatment at lower concentration, but was inhibited at higher concentration. We suggest that during TLR4 signaling CKD-712 inhibits NF-${\kappa}B$ activation. However, CKD-712 augmented the activation of Akt as well as Map kinases. Therefore, we suggest that CKD-712 might have a role as an immunomodulator.

Kinetics of Binding of LPS to Recombinant CD14, TLR4, and MD-2 Proteins

  • Shin, Han Jae;Lee, Hayyoung;Park, Jong Dae;Hyun, Hak Chul;Sohn, Hyung Ok;Lee, Dong Wook;Kim, Young Sang
    • Molecules and Cells
    • /
    • 제24권1호
    • /
    • pp.119-124
    • /
    • 2007
  • TLR4 together with CD14 and MD-2 forms a pattern recognition receptor that plays an initiating role in the innate immune response to Gram-negative bacteria. Here, we employed the surface plasmon resonance technique to investigate the kinetics of binding of LPS to recombinant CD14, MD-2 and TLR4 proteins produced in insect cells. The dissociation constants ($K_D$) of LPS for immobilized CD14 and MD-2 were $8.7{\mu}m$, and $2.3{\mu}m$, respectively. The association rate constant ($K_{on}$) of LPS for MD-2 was $5.61{\times}10^3M^{-1}S^{-1}$, and the dissociation rate constant ($K_{off}$) was $1.28{\times}10^2S^{-1}$, revealing slow association and fast dissociation with an affinity constant $K_D$ of $2.33{\times}10^6M$ at $25^{\circ}C$. These affinities are consistent with the current view that CD14 conveys LPS to the TLR4/MD-2 complex.

Guggulsterone Suppresses the Activation of NF-${\kappa}B$ and Expression of COX-2 Induced by Toll-like Receptor 2, 3, and 4 Agonists

  • Ahn, Sang-Il;Youn, Hyung-Sun
    • Food Science and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.1294-1298
    • /
    • 2008
  • Toll-like receptors (TLRs) induce innate immune responses recognizing conserved microbial structural molecules. All TLR signaling pathways culminate in the activation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$). The activation of NF-${\kappa}B$ leads to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2). Guggul has been used for centuries to treat a variety of diseases. Guggulstreone, one of the active ingredients in guggul, has been used to treat many chronic diseases. However, the mechanism as to how guggulsterone mediate the health effects is largely unknown. Here, we report biochemical evidence that guggulsterone inhibits the NF-${\kappa}B$ activation and COX-2 expression induced by TLR2, TLR3, and TLR4 agonists. Guggulsterone also inhibits the NF-${\kappa}B$ activation induced by downstream signaling components of TLRs, myeloid differential factor 88 (MyD88), $I{\kappa}B$ kinase ${\beta}$ ($IKK{\beta}$), and p65. These results imply that guggulsterone can modulate the immune responses regulated by TLR signaling pathways.

Genomic DNA Extracted from Lactiplantibacillus plantarum Attenuates Porphyromonas gingivalis Lipopolysaccharide (LPS)-Induced Inflammatory Responses via Suppression of Toll-Like Receptor (TLR)-Mediated Mitogen-Activated Protein Kinase (MAPK) and Nuclear Factor-κB (NF-κB) Signaling Pathways

  • Young Hyeon Choi;Bong Sun Kim;Seok-Seong Kang
    • 한국축산식품학회지
    • /
    • 제43권5호
    • /
    • pp.938-947
    • /
    • 2023
  • In the present study, we aimed to examine the inhibition of genomic DNA from Lactiplantibacillus plantarum (LpDNA) on Porphyromonas gingivalis lipopolysaccharide (PgLPS)-induced inflammatory responses in RAW264.7 cells. Pretreatment with LpDNA for 15 h significantly inhibited PgLPS-induced mRNA expression and protein secretion of interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein-1. LpDNA pretreatment also reduced the mRNA expression of Toll-like receptor (TLR)2 and TLR4. Furthermore, LpDNA inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) and the activation of nuclear factor-κB (NF-κB) induced by PgLPS. Taken together, these findings demonstrate that LpDNA attenuates PgLPS-induced inflammatory responses by regulating MAPKs and NF-κB signaling pathways through the suppression of TLR2 and TLR4 expression.

디프테리아 백신의 진화와 물리화학적, 분자생물학적, 면역학적 지식의 진보에 따른 새로운 백신의 개발에 관한 고찰연구 (The Evolution and Value of Diphtheria Vaccine)

  • 배경동
    • KSBB Journal
    • /
    • 제26권6호
    • /
    • pp.491-504
    • /
    • 2011
  • This review article provides an overview of the evolution of diphtheria vaccine, its value and its future. Diphtheria is an infectious illness caused by diphtheria toxin produced by pathogenic strains of Corynebacterium diphtheriae. It is characterized by a sore throat with membrane formation due to local tissue necrosis, which can lead to fatal airway obstruction; neural and cardiac damage are other common complications. Diphtheria vaccine was first brought to market in the 1920s, following the discovery that diphtheria toxin can be detoxified using formalin. However, conventional formalin-inactivated toxoid vaccines have some fundamental limitations. Innovative technologies and approaches with the potential to overcome these limitations are discussed in this paper. These include genetic inactivation of diphtheria toxoid, innovative vaccine delivery systems, new adjuvants (both TLR-independent and TLR-dependent adjuvants), and heat- and freeze-stable agents, as well as novel platforms for producing improved conventional vaccine, DNA vaccine, transcutaneous (microneedle-mediated) vaccine, oral vaccine and edible vaccine expressed in transgenic plants. These innovations target improvements in vaccine quality (efficacy, safety, stability and consistency), ease of use and/or thermal stability. Their successful development and use should help to increase global diphtheria vaccine coverage.