• Title/Summary/Keyword: TISSUE STRESS STATE

Search Result 46, Processing Time 0.045 seconds

Plantar Soft-tissue Stress states in standing: a Three-Dimensional Finite Element Foot Modeling Study

  • Chen, Wen-Ming;Lee, Peter Vee-Sin;Lee, Tae-Yong
    • 한국운동역학회지
    • /
    • 제19권2호
    • /
    • pp.197-204
    • /
    • 2009
  • It bas been hypothesized that foot ulceration might be internally initiated. Current instruments which merely allow superficial estimate of plantar loading acting on the foot, severely limit the scope of many biomechanical/clinical studies on this issue. Recent studies have suggested that peak plantar pressure may be only 65% specific for the development of ulceration. These limitations are at least partially due to surface pressures not being representative of the complex mechanical stress developed inside the subcutaneous plantar soft-tissue, which are potentially more relevant for tissue breakdown. This study established a three-dimensional and nonlinear finite element model of a human foot complex with comprehensive skeletal and soft-tissue components capable of predicting both the external and internal stresses and deformations of the foot. The model was validated by experimental data of subject-specific plantar foot pressure measures. The stress analysis indicated the internal stresses doses were site-dependent and the observation found a change between 1.5 to 4.5 times the external stresses on the foot plantar surface. The results yielded insights into the internal loading conditions of the plantar soft-tissue, which is important in enhancing our knowledge on the causes of foot ulceration and related stress-induced tissue breakdown in diabetic foot.

Expression of Extracellular Superoxide Dismutase Protein in Diabetes

  • Kim, Chul Han
    • Archives of Plastic Surgery
    • /
    • 제40권5호
    • /
    • pp.517-521
    • /
    • 2013
  • Background Diabetes is characterized by chronic hyperglycemia, which can increase reactive oxygen species (ROS) production by the mitochondrial electron transport chain. The formation of ROS induces oxidative stress and activates oxidative damage-inducing genes in cells. No research has been published on oxidative damage-related extracellular superoxide dismutase (EC-SOD) protein levels in human diabetic skin. We investigated the expression of EC-SOD in diabetic skin compared with normal skin tissue in vivo. Methods The expression of EC-SOD protein was evaluated by western blotting in 6 diabetic skin tissue samples and 6 normal skin samples. Immunohistochemical staining was also carried out to confirm the EC-SOD expression level in the 6 diabetic skin tissue samples. Results The western blotting showed significantly lower EC-SOD protein expression in the diabetic skin tissue than in the normal tissue. Immunohistochemical examination of EC-SOD protein expression supported the western blotting analysis. Conclusions Diabetic skin tissues express a relatively small amount of EC-SOD protein and may not be protected against oxidative stress. We believe that EC-SOD is related to the altered metabolic state in diabetic skin, which elevates ROS production.

Characterization of quercetin and its glycoside derivatives in Malus germplasm

  • Zhang, Lei;Xu, Qipeng;You, Yaohua;Chen, Weifeng;Xiao, Zhengcao;Li, Pengmin;Ma, Fengwang
    • Horticulture, Environment, and Biotechnology : HEB
    • /
    • 제59권6호
    • /
    • pp.909-917
    • /
    • 2018
  • Quercetin and its glycoside derivatives were identified and quantified using high-performance liquid chromatograph (HPLC) and liquid chromatograph/mass spectrometer/mass spectrometer (LC/MS/MS) in the leaves, flowers, and fruits of 22 Malus genotypes. In all genotypes, small amounts of quercetin aglycone were present, with water-soluble glycoside forms were the most abundant in different Malus plant tissues, including quercetin-3-galactoside, quercetin-3-rutinoside, quercetin-3-glucoside, quercetin-3-xyloside, quercetin-3-arabinoside, and quercetin-3-rhamnoside. Among these six quercetin glycosides, quercetin-3-galactoside was the common form in Malus plants, except in the leaves and flowers of M. ceracifolia and M. magdeburgensis, and in the fruits of M. micromalus 'Haihong Fruit', where there was a higher concentration of quercetin3-glucoside. Among the different tissues tested, leaves contained the highest concentration of quercetin and its glycosides, while fruits contained the lowest concentrations of these compounds. Among the genotypes we analyzed, no specific genotype consistently contained the highest concentration of quercetin and its glycoside derivatives. M. domestica 'Honeycrisp' had the highest total compound concentration (approximately $1600mg\;kg^{-1}$), whereas M. hupehensis contained the lowest in its fruits. In contrast, the concentration of total quercetin and its glycosides was more than $5000mg\;kg^{-1}$ in the leaves of eight genotypes and greater than $2500mg\;kg^{-1}$ in the flowers of seven species. In general, the concentration of quercetin and its glycoside derivatives depended on the species and tissue type. These results may provide useful information for the evaluation and selection of edible Malus fruits and the materials for quercetin glycoside extraction.

Superoxide Dismutase Isoenzyme Activities in Plasma and Tissues of Iraqi Patients with Breast Cancer

  • Hasan, Hathama Razooki;Mathkor, Thikra Hasan;Al-Habal, Mohammed Hasan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2571-2576
    • /
    • 2012
  • Breast cancer is the first of the most common ten cancers in Iraq. Its etiology is multifactorial, oxidative stress and lipid peroxidation being suggested to play important roles in carcinogenesis. The purpose of this study was to investigate the oxidant-antioxidant status in breast cancer patients, by measuring SOD isoenzyme activities (total SOD, CuZn-SOD, Mn-SOD and EC-SOD) in plasma and breast tumors, and by estimating thiobarbituric reactive substances (TBRS) in tissue homogenates. General increase in total SOD activity was observed in plasma and tissue samples of breast tumors, greater in the malignant when compared to benign group (p<0.05). Mn-SOD showed a significant decrease in tissue malignant samples (p<0.05), and insignificant decrease in plasma malignant samples compared with control and benign samples. Plasma EC-SOD activity in both patient benign and malignant breast tumors demonstrated 3.5% and 22.8% increase, respectively. However, there was a decrease in tissue EC-SOD activity in malignant breast tumors when compared with benign. A similar tendency was noted for TBRS. We suggest that elevated total SOD might reflect a response to oxidative stress, and then may predict a state of excess reactive oxygen species in the carcinogenesis process. If there is proteolytic removal of the heparin binding domain, EC-SOD will lose its affinity for the extracellular matrix and diffuse out of the tissue. This will result in a decreased EC-SOD activity, thus leading to an increase in the steady-state concentration of $O^{2-}$ in this domain, and increase in EC-SOD activity in the extracellular fluid. This might explain the results recorded here concerning the decrease in tissue EC-SOD activity and increase in plasma of breast cancer patients.

Use of Moving Aeration Membrane Bioreactor for the Efficient Production of Tissue Type Plasminogen Activator in Serum Free Medium

  • Hyun Koo Kim;Moo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제1권1호
    • /
    • pp.32-35
    • /
    • 1996
  • Amoving aeration-membrane (MAM) bioreactor was employed for the production of 2$\mu$g/mL of tissue type Plasminogen Activator (tPA)in serum free medium from normal human fibroblast cells. This system could maintain high cell density for long periods of steady state conditions in perfusion cultivation. Under normal operating condition, shear stress was as low as 0.65 dynes/$\textrm{cm}^2$ at the agitation speed of 80 rpm. Even though cell density gradually decreased with increasing agitation speed, tPA production increased linearly with increasing shear stress within a moderate range. This culture system allowed production of 2$\mu$g tPA/mL while maintaining a high cell denisty of 1.0$\times$107 viable cell/mL.

  • PDF

Epithelial to mesenchymal transition (EMT) of feto-maternal reproductive tissues generates inflammation: a detrimental factor for preterm birth

  • Menon, Ramkumar
    • BMB Reports
    • /
    • 제55권8호
    • /
    • pp.370-379
    • /
    • 2022
  • Human pregnancy is a delicate and complex process where multiorgan interactions between two independent systems, the mother, and her fetus, maintain pregnancy. Intercellular interactions that can define homeostasis at the various cellular level between the two systems allow uninterrupted fetal growth and development until delivery. Interactions are needed for tissue remodeling during pregnancy at both fetal and maternal tissue layers. One of the mechanisms that help tissue remodeling is via cellular transitions where epithelial cells undergo a cyclic transition from epithelial to mesenchymal (EMT) and back from mesenchymal to epithelial (MET). Two major pregnancy-associated tissue systems that use EMT, and MET are the fetal membrane (amniochorion) amnion epithelial layer and cervical epithelial cells and will be reviewed here. EMT is often associated with localized inflammation, and it is a well-balanced process to facilitate tissue remodeling. Cyclic transition processes are important because a terminal state or the static state of EMT can cause accumulation of proinflammatory mesenchymal cells in the matrix regions of these tissues and increase localized inflammation that can cause tissue damage. Interactions that determine homeostasis are often controlled by both endocrine and paracrine mediators. Pregnancy maintenance hormone progesterone and its receptors are critical for maintaining the balance between EMT and MET. Increased intrauterine oxidative stress at term can force a static (terminal) EMT and increase inflammation that are physiologic processes that destabilize homeostasis that maintain pregnancy to promote labor and delivery of the fetus. However, conditions that can produce an untimely increase in EMT and inflammation can be pathologic. These tissue damages are often associated with adverse pregnancy complications such as preterm prelabor rupture of the membranes (pPROM) and spontaneous preterm birth (PTB). Therefore, an understanding of the biomolecular processes that maintain cyclic EMT-MET is critical to reducing the risk of pPROM and PTB. Extracellular vesicles (exosomes of 40-160 nm) that can carry various cargo are involved in cellular transitions as paracrine mediators. Exosomes can carry a variety of biomolecules as cargo. Studies specifically using exosomes from cells undergone EMT can carry a pro-inflammatory cargo and in a paracrine fashion can modify the neighboring tissue environment to cause enhancement of uterine inflammation.

Juxtacrine regulation of cellular senescence

  • Narita, Masashi
    • BMB Reports
    • /
    • 제52권1호
    • /
    • pp.3-4
    • /
    • 2019
  • Cellular senescence is defined as a state of stable cell cycle exit in response to various stimuli, which include both cytotoxic stress and physiological cues. In addition to the core non-proliferative aspect, senescence is associated with diverse functionalities, which contribute to the role of senescence in a wide range of pathological and physiological processes. Such functionality is often mediated by the capability of senescent cells to communicate with their surroundings. Emerging evidence suggests that senescence is not a single entity, but a dynamic and heterogeneous collective phenotype. Understanding the diverse nature of senescence should provide insights into the complexity of tissue homeostasis and its disruption, such as in aging and tumorigenesis.

Roles of Oxidative Stress in the Development and Progression of Breast Cancer

  • Nourazarian, Ali Reza;Kangari, Parisa;Salmaninejad, Arash
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권12호
    • /
    • pp.4745-4751
    • /
    • 2014
  • Oxidative stress is caused by an imbalance in the redox status of the body. In such a state, increase of free radicals in the body can lead to tissue damage. One of the most important species of free radicals is reactive oxygen species (ROS) produced by various metabolic pathways, including aerobic metabolism in the mitochondrial respiratory chain. It plays a critical role in the initiation and progression of various types of cancers. ROS affects different signaling pathways, including growth factors and mitogenic pathways, and controls many cellular processes, including cell proliferation, and thus stimulates the uncontrolled growth of cells which encourages the development of tumors and begins the process of carcinogenesis. Increased oxidative stress caused by reactive species can reduce the body's antioxidant defense against angiogenesis and metastasis in cancer cells. These processes are main factors in the development of cancer. Bimolecular reactions cause free radicals in which create such compounds as malondialdehyde (MDA) and hydroxyguanosine. These substances can be used as indicators of cancer. In this review, free radicals as oxidizing agents, antioxidants as the immune system, and the role of oxidative stress in cancer, particularly breast cancer, have been investigated in the hope that better identification of the factors involved in the occurrence and spread of cancer will improve the identification of treatment goals.

Effect of combined mulberry leaf and fruit extract on liver and skin cholesterol transporters in high fat diet-induced obese mice

  • Valacchi, Giuseppe;Belmonte, Giuseppe;Miracco, Clelia;Eo, Hyeyoon;Lim, Yunsook
    • Nutrition Research and Practice
    • /
    • 제8권1호
    • /
    • pp.20-26
    • /
    • 2014
  • Obesity is an epidemic disease characterized by an increased inflammatory state and chronic oxidative stress with high levels of pro-inflammatory cytokines and lipid peroxidation. Moreover, obesity alters cholesterol metabolism with increases in low-density lipoprotein (LDL) cholesterols and triglycerides and decreases in high-density lipoprotein (HDL) cholesterols. It has been shown that mulberry leaf and fruit ameliorated hyperglycemic and hyperlipidemic conditions in obese and diabetic subjects. We hypothesized that supplementation with mulberry leaf combined with mulberry fruit (MLFE) ameliorate cholesterol transfer proteins accompanied by reduction of oxidative stress in the high fat diet induced obesity. Mice were fed control diet (CON) or high fat diet (HF) for 9 weeks. After obesity was induced, the mice were administered either the HF or the HF with combination of equal amount of mulberry leaf and fruit extract (MLFE) at 500mg/kg/day by gavage for 12 weeks. MLFE treatment ameliorated HF induced oxidative stress demonstrated by 4-hydroxynonenal (4-HNE) and modulated the expression of 2 key proteins involved in cholesterol transfer such as scavenger receptor class B type 1 (SR-B1) and ATP-binding cassette transporter A1 (ABCA1) in the HF treated animals. This effect was mainly noted in liver tissue rather than in cutaneous tissue. Collectively, this study demonstrated that MLFE treatment has beneficial effects on the modulation of high fat diet-induced oxidative stress and on the regulation of cholesterol transporters. These results suggest that MLFE might be a beneficial substance for conventional therapies to treat obesity and its complications.

Tendon Responses Depending on Different Anatomical Locations

  • Chun, Keyoung-Jin;Robert P. Hubbard
    • Journal of Mechanical Science and Technology
    • /
    • 제17권7호
    • /
    • pp.1011-1015
    • /
    • 2003
  • The objectives of this work focus on the differences in responses of paired tendons from different anatomical locations. Tendon specimens were obtained from the hindlimbs of canines and frozen to -70$^{\circ}C$. After being thawed, specimens were mounted in the immersion bath, preloaded to 0.13N, and then subjected to 3% or 4% of the initial length at a strain rate of 5%/sec. It was found that the mechanical responses of anatomically paired tendons were nearly the same within each pair but different between pairs of tendons from different anatomical locations. Although flexor tendons had much larger cross-sectional area than the others, such as peroneus or extensor tendons, the stiffness of the flexor tendons were much lower than the others throughout their stress-strain responses. The nature and causes of these differences in the stiffness are not fully known. However, it is clear that differences in the mechanical response of tendons and other connective tissues are significant to the musculoskeletal performance.