• Title/Summary/Keyword: TIMP-1

Search Result 207, Processing Time 0.043 seconds

Analysis of Protease and Antiprotease Concentrations in Retired Workers Exposed to Inorganic Dusts

  • Shin, Jae-Hoon;Hwang, Joo-Hwan;Lee, Kyung-Myung;Lee, Jong-Seong;Lee, Jeong-Oh;Choi, Byung-Soon;Kim, In-Sik
    • Biomedical Science Letters
    • /
    • v.15 no.4
    • /
    • pp.309-317
    • /
    • 2009
  • Occupational exposure to inorganic dusts such as coal and silica has been identified as a chronic obstructive pulmonary disease (COPD) risk factor. This risk factor causes lung inflammation and protease-antiprotease imbalance. This abnormal inflammatory response of the lung induces parenchymal tissue destruction and leads to progressive airflow limitation that is characteristics of COPD. The aim of this study was to determine the relationship of proteases such as neutrophil elastase (NE) and matrix metalloproteinase (MMP)-9 and antiproteases such as alpha-1 antitrypsin (AAT) and tissue inhibitors of metalloproteinase (TIMP)-1 with lung function. The study population contained 223 retired workers exposed to inorganic dusts. We performed lung function test, including percent of forced expiratory volume in one second ($%FEV_1$) predicted and $%FEV_1$/forced vital capacity (FVC). We analyzed serum MMP-9, AAT, TIMP-1 and plasma NE concentrations by sandwich enzyme immunoassay. NE, AAT, and TIMP-1 concentrations in workers, who had $%FEV_1$<80% predicted, were higher than those of workers who had $%FEV_1{\geq}80%$ (P<0.05). Both AAT and TIMP-1 concentrations in workers with airflow limitation were higher than those of workers with normal airflow (P<0.05). $%FEV_1$ predicted showed significant negative correlation with AAT (r=-0.255, P<0.0l), TIMP-1 (r=-0.232, P<0.01), and NE (r=-0.196, P<0.01). $%FEV_1$/FVC predicted showed significant negative correlation with NE (r=-0.172, P<0.05). From the results of stepwise multiple regression analysis about $%FEV_1$ and $%FEV_1$/FVC, significant independents were NE (r=-0.135, P=0.001) and AAT (r=-0.100, P=0.013) in $%FEV_1$, and NE (r=-0.160, P=0.014) in $%FEV_1$/FVC. In the present study, there were significant correlations between airflow limitation and protease concentration and between airflow limitation and antiprotease concentration. Serum protease and antiprotease concentrations, however, may be affected by the biological and inflammatory responses. It is necessary to evaluate specimens more reflected the effects of proteases and antiproteases in the lung such as lung tissue, bronchoalveolar lavage fluid, and exhaled breath condensate (EBC).

  • PDF

Vitamin D Inhibits Expression and Activity of Matrix Metalloproteinase in Human Lung Fibroblasts (HFL-1) Cells

  • Kim, Seo Hwa;Baek, Moon Seong;Yoon, Dong Sik;Park, Jong Seol;Yoon, Byoung Wook;Oh, Byoung Su;Park, Jinkyeong;Kim, Hui Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.77 no.2
    • /
    • pp.73-80
    • /
    • 2014
  • Background: Low levels of serum vitamin D is associated with several lung diseases. The production and activation of matrix metalloproteinases (MMPs) may play an important role in the pathogenesis of emphysema. The aim of the current study therefore is to investigate if vitamin D modulates the expression and activation of MMP-2 and MMP-9 in human lung fibroblasts (HFL-1) cells. Methods: HFL-1 cells were cast into three-dimensional collagen gels and stimulated with or without interleukin-$1{\beta}$ (IL-$1{\beta}$) in the presence or absence of 100 nM 25-hydroxyvitamin D (25(OH)D) or 1,25-dihydroxyvitamin D ($1,25(OH)_2D$) for 48 hours. Trypsin was then added into the culture medium in order to activate MMPs. To investigate the activity of MMP-2 and MMP-9, gelatin zymography was performed. The expression of the tissue inhibitor of metalloproteinase (TIMP-1, TIMP-2) was measured by enzyme-linked immunosorbent assay. Expression of MMP-9 mRNA and TIMP-1, TIMP-2 mRNA was quantified by real time reverse transcription polymerase chain reaction. Results: IL-$1{\beta}$ significantly stimulated MMP-9 production and mRNA expression. Trypsin converted latent MMP-2 and MMP-9 into their active forms of MMP-2 (66 kDa) and MMP-9 (82 kDa) within 24 hours. This conversion was significantly inhibited by 25(OH)D (100 nM) and $1,25(OH)_2D$ (100 nM). The expression of MMP-9 mRNA was also significantly inhibited by 25(OH)D and $1,25(OH)_2D$. Conclusion: Vitamin D, 25(OH)D, and $1,25(OH)_2D$ play a role in regulating human lung fibroblast functions in wound repair and tissue remodeling through not only inhibiting IL-$1{\beta}$ stimulated MMP-9 production and conversion to its active form but also inhibiting IL-$1{\beta}$ inhibition on TIMP-1 and TIMP-2 production.

MiR-29a and MiR-140 Protect Chondrocytes against the Anti-Proliferation and Cell Matrix Signaling Changes by IL-1β

  • Li, Xianghui;Zhen, Zhilei;Tang, Guodong;Zheng, Chong;Yang, Guofu
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.103-110
    • /
    • 2016
  • As a degenerative joint disease, osteoarthritis (OA) constitutes a major cause of disability that seriously affects the quality of life of a large population of people worldwide. However, effective treatment that can successfully reverse OA progression is lacking until now. The present study aimed to determine whether two small non-coding RNAs miR-29a and miR-140, which are significantly down-regulated in OA, can be applied together as potential therapeutic targets for OA treatment. MiRNA synergy score was used to screen the miRNA pairs that potentially synergistically regulate OA. An in vitro model of OA was established by treating murine chondrocytes with IL-$1{\beta}$. Transfection of miR-29a and miR-140 via plasmids was investigated on chondrocyte proliferation and expression of nine genes such as ADAMTS4, ADAMTS5, ACAN, COL2A1, COL10A1, MMP1, MMP3, MMP13 and TIMP metallopeptidase inhibitor 1 (TIMP1). Western blotting was used to determine the protein expression level of MMP13 and TIMP1, and ELISA was used to detect the content of type II collagen. Combined use of miR-29a and miR-140 successfully reversed the destructive effect of IL-$1{\beta}$ on chondrocyte proliferation, and notably affected the MMP13 and TIMP1 gene expression that regulates extracellular matrix. Although co-transfection of miR-29a and miR-140 did not show a synergistic effect on MMP13 protein expression and type II collagen release, but both of them can significantly suppress the protein abundance of MMP13 and restore the type II collagen release in IL-$1{\beta}$ treated chondrocytes. Compared with single miRNA transfection, cotransfection of both miRNAs exceedingly abrogated the suppressed the protein production of TIMP1 caused by IL-$1{\beta}$, thereby suggesting potent synergistic action. These results provided1novel insights into the important function of miRNAs' collaboration in OA pathological development. The reduced MMP13, and enhanced TIMP1 protein production and type II collagen release also implies that miR-29a and miR-140 combination treatment may be a possible treatment for OA.

Curcumin Effect on MMPs and TIMPs Genes in a Breast Cancer Cell Line

  • Hassan, Zeinab Korany;Daghestani, Maha Hassan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3259-3264
    • /
    • 2012
  • Curcumin (CM) possesses anti-cancer activity against a variety of tumors. Matrix metalloproteinases (MMPs) play an important role in remodeling the extracellular matrix and their activities are regulated by tissue inhibitor of metalloproteinases (TIMPs) family. Control of MMP and TIMP activity are now of great significance. In this study, the effect of CM is investigated on metastatic MMPs and anti-metastatic TIMPs genes on MDA breast cancer cells cultured in a mixture of DMEM and Ham's F12 medium and treated with different concentrations of CM (10, 20 and $40{\mu}M$ for various lengths of time. Reverse transcription followed by quantitative real time PCR was used to detect the gene expression levels of MMPs and TIMPs in CM-treated versus untreated cases and the data were analyzed by one-way ANOVA. At high concentrations of curcumin, TIMP-1, -2, -3 and -4 genes were up-regulated after 48 hours of treatment, their over-expression being accompanied by down-regulation of MMP-2 and MMP-9 gene expression levels in a concentration- and time-dependent manner. These results suggest that curcumin plays a role in regulating cell metastasis by inhibiting MMP-2 and MMP-9 and up-regulating TIMP1 and TIMP4 gene expression in breast cancer cells.

THE mRNA EXPRESSION OF GROWTH FACTORS IN FIBROBLAST FROM GINGIVAL HYPERPLASIA INDUCED BY CYCLOSPORINE A (Cyclosporine A에 의해 과증식된 치은 조직에서 배양된 섬유아세포의 성장인자 발현에 관한 연구)

  • Kim, Young-Muen;Hwang, Kyung-Gyun;Lee, Jae-Seon;Park, Chang-Joo;Shim, Kwang-Sup
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.5
    • /
    • pp.445-453
    • /
    • 2006
  • Cyclosporine A (CsA) is a powerful immunosuppresive agent used to prevent graft rejection of organ and treat autoimmune disease. One of the major side effects associated with CsA treatment is the development of gingival overgrowth. The purpose of this study was to investigate the mRNA expression and association of the several growth factors in gingival overgrowth induced by CsA, respectively. Gingival fibroblasts were obtained from gingival tissues of healthy donor and the patients treated with CsA. The cultured gingival fibroblasts were incubated with increasing concentrations of CsA for 24 hours, and the expression of MMP-1, TIMP-1, $TGF-{\beta}_1$, p21 were determined by reverse transcription-polymerase chain reaction (RT-PCR). The expressions of MMP-1 was slightly increased according to the concentration of treated CsA, but there was no statistical significance. TIMP-1 showed the increased expression at the CsA concentration of 250 and 500 ng/ml and significantly decreased at the CsA concentration of 750ng/ml. $TGF-{\beta}_1$ showed the increased expression at the CsA concentration of 500 and 750 ng/ml. The expression of p21 was not changed significantly. We concluded that the gingival hyperplasia induced by CsA was more related with $TGF-{\beta}_1$ than MMP-1 or TIMP-1 on gingival collagen metabolism in patients treated with CsA.

Matrix Degradative Enzymes and Their Inhibitors during Annular Inflammation : Initial Step of Symptomatic Intervertebral Disc Degeneration

  • Kim, Joo Han;Park, Jin Hyun;Moon, Hong Joo;Kwon, Taek Hyun;Park, Youn Kwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.5
    • /
    • pp.237-243
    • /
    • 2014
  • Objective : Symptomatic disc degeneration develops from inflammatory reactions in the annulus fibrosus (AF). Although inflammatory mediators during annular inflammation have been studied, the roles of matrix metalloproteinases (MMPs) and their inhibitors have not been fully elucidated. In this study, we evaluated the production of MMPs and tissue inhibitors of metalloproteinase (TIMPs) during annular inflammation using an in vitro co-culture system. We also examined the effect of notochordal cells on annular inflammation. Methods : Human AF (hAF) pellet was co-cultured for 48 hours with phorbol myristate acetate-stimulated macrophage-like THP-1 cells. hAF pellet and conditioned media (CM) from co-cultured cells were assayed for MMPs, TIMPs, and insulin-like growth factor (IGF)-1 levels using real-time reverse-transcriptase polymerase chain reaction and enzyem-linked immunosorbent assay. To evaluate whether notochordal cells affected MMPs or TIMPs production on annular inflammation, hAF co-cultured with notochordal cells from adult New Zealand White rabbits, were assayed. Results : MMP-1, -3, -9; and TIMP-1 levels were significantly increased in CM of hAF co-cultured with macrophage-like cells compared with hAF alone, whereas TIMP-2 and IGF-1 levels were significantly decreased (p<0.05). After macrophage exposure, hAF produced significantly more MMP-1 and -3 and less TIMP-1 and -2. Interleukin-$1{\beta}$ stimulation enhanced MMP-1 and -3 levels, and significantly diminished TIMP-2 levels. Co-culturing with rabbit notochordal cells did not significantly influence MMPs and TIMPs production or COL1A2 gene expression. Conclusion : Our results indicate that macrophage-like cells evoke annular degeneration through the regulation of major degradative enzymes and their inhibitors, produced by hAF, suggesting that the selective regulation of these enzymes provides future targets for symptomatic disc degeneration therapy.

Gene Expression of Metalloproteinases, Tissue Inhibitors of Metalloproteinases and Cytokines in Adriamycin-induced Cardiomyopathy (아드리아마이신으로 유도된 심근증에서 Metalloproteinase, Metalloproteinase 조직억제자, Cytokine 유전자 발현에 대한 연구)

  • Hong, Young Mi
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.2
    • /
    • pp.197-203
    • /
    • 2005
  • Purpose : Changes in metalloproteinases(MMP) activity have been demonstrated in several disease states, including rheumatoid arthritis and tumor metastasis. More importantly, increased myocardial MMP activity has been reported to occur in both clinical and experimental forms of dilated cardiomyopathy. There was no report about MMP in adriamycin(ADR)-induced cardiomyopathy. The purpose of this study was to investigate gene expression of MMP and tissue inhibitor of metalloproteinases(TIMP) in ADR-induced cardiomyopathy and clarify the relationship between MMP and cytokines. Methods : Male Sprague-Dawley rats were divided into two groups. The first group was control. The second group was given intraperitoneal injections of ADR(5 mg/kg) twice a week over two weeks. Serum concentrations of MMP, TIMP, interleukin(IL)-6 and tumor necrosis factor(TNF)-${\alpha}$ were measured. RNA extraction was performed from frozen rat hearts. Reverse transcription polymerase chain reaction(RT-PCR) was employed. cDNA Microarray analysis was performed by using a set of 5,184 sequence-verified rat cDNA clones. Results : Serum MMP and TIMP levels were not significantly different between the two groups. IL-6 was $36.8{\pm}2.8pg/mL$ and TNF-${\alpha}$ $2.2{\pm}2.7pg/mL$ in the ADR group. They were significantly higher than in the control group. Serum MMP correlated significantly with TNF-${\alpha}$(r=0.41, P<0.05). There was no gene expression of MMP, IL-6 or TNF-${\alpha}$ in the hearts of both groups. Gene expression of TIMP was significantly depressed in the hearts of the ADR group. Conclusion : These results suggested a potential role for TNF-${\alpha}$ in the regulation of extracellular matrix remodeling in ADR induced cardiomyopathy. Rapid screening of multiple decreased gene expression by DNA chip may be a useful diagnostic test to detect early cardiac injury before developing ADR induced cardiomyopathy.

Processed Panax ginseng, Sun Ginseng Increases Type I Collagen by Regulating MMP-1 and TIMP-1 Expression in Human Dermal Fibroblasts

  • Song, Kyu-Choon;Chang, Tong-Shin;Lee, Hye-Jin;Kim, Jin-Hee;Park, Jeong-Hill;Hwang, Gwi-Seo
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.61-67
    • /
    • 2012
  • In the present study, effects of sun ginseng (SG) on the collagen synthesis and the proliferation of dermal fibroblast were investigated. Collagen synthesis was measured by assaying procollagen type I C-peptide production. In addition, the level of matrix metalloproteinase (MMP)-1 was assessed by western blot analysis. SG suppressed the MMP-1 protein level in a dose-dependent manner. In contrast, SG dose-dependently increased tissue inhibitors of MMP (TIMP)-1 production in fibroblasts. SG increased type I collagen production directly and/or indirectly by reducing MMP-1 and stimulating TIMP-1 production in human dermal fibroblasts. SG dose-dependently induced fibroblast proliferation and this, in turn, can trigger more collagen production. These results suggest that SG may be a potential pharmacological agent with anti-aging properties in cultured human skin fibroblast.

Assessment of MMP-1, MMP-8 and TIMP-2 in experimental periodontitis treated with kaempferol

  • Balli, Umut;Cetinkaya, Burcu Ozkan;Keles, Gonca Cayir;Keles, Zeynep Pinar;Guler, Sevki;Sogut, Mehtap Unlu;Erisgin, Zuleyha
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.2
    • /
    • pp.84-95
    • /
    • 2016
  • Purpose: The objective of this study was to investigate the effect of a dietary flavonoid, kaempferol, which has been shown to possess antiallergic, anti-inflammatory, anticarcinogenic, and antioxidant activities on the periodontium by histomorphometric analysis and on gingival tissue matrix metalloproteinase-1 (MMP-1), MMP-8, and tissue inhibitor of metalloproteinase-2 (TIMP-2) by biochemical analysis of rats after experimental periodontitis induction. Methods: Sixty Wistar rats were randomly divided into six groups of ten rats each, and silk ligatures were placed around the cervical area of the mandibular first molars for 15 days, except in the healthy control rats. In the experimental periodontitis groups, systemic kaempferol (10 mg/kg/2d) and saline were administered by oral gavage at two different periods (with and without the presence of dental biofilm) to all rats except for the ten non-medicated rats. Alveolar bone area, alveolar bone level, and attachment level were determined by histomorphometric analysis, and gingival tissue levels of MMP-1, MMP-8, and TIMP-2 were detected by biochemical analysis. Results: Significantly greater bone area and significantly less alveolar bone and attachment loss were observed in the kaempferol application groups compared to the control groups (P<0.05). In addition, gingival tissue MMP-1 and -8 levels were significantly lower in the kaempferol application groups compared to the control groups and the periodontitis group (P<0.001). There were no statistically significant differences in TIMP-2 levels between the kaempferol and saline application groups (P>0.05). Conclusions: Kaempferol application may be useful in decreasing alveolar bone resorption, attachment loss, and MMP-1 and -8 production in experimental periodontitis.