• Title/Summary/Keyword: THREE PHASES OF SOIL

Search Result 41, Processing Time 0.026 seconds

Evaluation of the performance of encapsulated lifting system composting technology with a GORE(R) cover membrane: Physico-chemical properties and spectroscopic analysis

  • Al-Alawi, Mutaz;El Fels, Loubna;Benjreid, Ramadan;Szegi, Tamas;Hafidi, Mohamed;Simon, Barbara;Gulyas, Miklos
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.299-308
    • /
    • 2020
  • Composting is among the most effective integrated waste management strategies used to recycle sewage sludge (SS) waste and generate a useful product. An encapsulated lifting system is a relatively new industrial-scale composting technology. The objective of this study was to evaluate the effectiveness of composting dewatered stabilized SS mixed with green waste using this new technology. The composting process was monitored by changes in the physico-chemical properties, UV-visible spectra, and fourier transform infrared (FTIR) spectra. The composting temperature was steady in the thermophilic range for 24 and 12 d in the intensive and maturation phases, respectively, which fulfilled the disinfection requirement. Moreover, the temperature increased rapidly to 76.8℃ within three days, and the thermophilic temperatures peaked twice and lasted longer than in traditional composting, which accelerated SS degradation and decreased the composting period necessary to obtain mature compost. FTIR spectroscopic analysis showed a diminished in methyl group derived from methylene C-H aliphatic groups because of organic matter degradation by microorganisms and an increased number of aromatic chains. The new technology may be a viable and sustainable alternative for SS management that converts waste into compost that is useful as a soil amendment.

Transport of Selected Veterinary Antibiotics (Tetracyclines and Sulfonamides) in a Sandy Loam Soil: Laboratory-Scale Soil Column Experiments (토양컬럼을 이용한 테트라사이클린계 및 설폰아마이드계 항생물질의 이동특성 평가)

  • Lee, Hyeon-Yong;Lim, Jung-Eun;Kim, Sung-Chul;Kim, Kwon-Rae;Kwon, Oh-Kyung;Yang, Jae-E.;Ok, Yong-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1105-1112
    • /
    • 2009
  • Antibiotics are biologically active substances and commonly used for therapeutic treatment of infectious disease in humans and for treating and protecting the health of animals. In recent years, antibiotics have attracted worldwide attention because of their side effects on the environment. Consequently, efforts have been made to monitor the residual of antibiotics in the environment. This study tested the mobility of tetracyclines and sulfonamides in soil and leachate through column experiments. The three tetracycline antibiotics showed higher mass recovery rates in all kinds of soils(28.00~44.11%) than in leachate(10.54~27.43%). This seems attributable to the high adsorption coefficient values($K_d$) of tetracyclines representing strong and active adsorbability to organic and mineral phases in soil, ending up relatively small amount being detected in surface water. By contrast, the sulfonamides(sulfamethazine and sulfathiazole) showed higher mass recovery rates in leachate(23.19~26.20%) compared to in soil(10.41~14.21%) due to lower adsorption coefficient values and higher mobility of sulfonamides, enabling easier movement to surface water through the runoff in the environment.

Effect of Soil Environment on Diversity and Population of Aerobic Soil Bacteria from Baekdudaegan Mountain Forests in Gyeongsangbuk-do, Korea (경상북도 산림지역의 토양 환경이 호기성 토양 세균의 다양성과 밀도에 미치는 영향)

  • Park, Chul Yeong;Lee, Sun Keun;Kim, Ji Hong;Lee, Sang Yong;Lee, Jong Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.501-508
    • /
    • 2012
  • This study was carried out to compare species diversity of soil bacteria from Baekdudaegan mountain forests (Bonghwa-gun, Mungyeong-si and Sangju-si) in Gyeongsangbuk-do and to analyze the effects of soil environments on diversity and population of soil bacteria. Soil bacteria were isolated from soil samples by streak plate method, and identified by DNA extaction and 16S rDNA sequence analyses. The population of soil bacteria from the soil samples of Bonghwa-gun was the highest with $5.1{\times}10^5cfu/g$, and followed by those from Mungyeong-si and Sangju-si with $1.9{\times}10^5cfu/g$ and $1.1{\times}10^5cfu/g$, respectively. The population of soil bacteria from surface layer soil was the highest, and then gradually decreased according to soil depth. The increase in population of soil bacteria from soil samples of different sites was correlated with the increase of the altitude of soil sampling site, depth of A horizon, liquid phase among three phases of soil, water content and bulk density of soil. Two hundreds and sixty eight bacterial colonies from Bonghwa-gun were classified into 10 species, 8 genera. One hundred and thirty four bacterial colonies from Mungyeong-si were classified into 15 species, 9 genera. Forty four bacterial colonies from Sangju-si were classified into 5 species, 2 genera. The dominant species (occupancy rate) from Bonghwa-gun and Mungyeong-si were Bacillus weihenstephanensis (36% and 40%, respectively), and Sangju-si was Bacillus cereus (39%). The relationships between soil environment and community structure of soil bacteria were analyzed statistically by using ecological indices. The diversity, evenness and dominance indices of soil bacteria were 6.30, 2.04 and 0.59 in Bonghwa-gun, 9.09, 2.94 and 0.51 in Mungyeong-si, and 4.55, 2.34 and 0.71 in Sangju-si, respectively. The diversity and evenness indices were increased by the increase of water content, drainage condition and gravel content of soil, while the dominance index was decreased.

Three Phases and Water Characteristics of Horticultural Substrates (원예(園藝) 상토재료(床土材料)의 삼상(三相)과 수분특성(水分特性))

  • Jo, In-Sang;Hyun, Byung-Keun;Cho, Hyun-Jun;Jang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.1
    • /
    • pp.56-61
    • /
    • 1997
  • A study was carried out to find out the basic information in physical properties for selection and manufacturing the good seedling media through the analysis of the physical properties, such as particle size, water retention and three phases of the major horticultural substrates. Easily available water(EAW), the water contents between 1kPa and 5kPa water potental, was highest in peatmoss with 39%, and perlite 34.0%, vermiculite 16.9%, but the values of osmunda and bark were lower than 4.8%. Water buffering capacity(WBC), the water content between 5kPa and 10kPa, was 6.1% in peatmoss and 2.3% in vermiculite but it was lower than 1.0% in other substrates. To adjust the suitable range of water potential at crossing point of water and air curves to 1.5~2.5kPa, more finer materials were needed in osmunda and bark, and more coarser materials must be added to peatmoss, perlite and vermiculite. Water potentials of substrates in saturated pot condition were equivalent to 2.2kPa in peatmoss and others were ranged in 1.0kPa to 4.3kPa of water potential in pressure chamber.

  • PDF

A Study on the Exterior Color of Housing in Rural Area Comparing with Traditional Housing Color (농촌지역 전통, 개량 및 신축주택 외장색채 비교분석 연구)

  • Paik, Suk-Jong
    • Journal of the Korean housing association
    • /
    • v.19 no.6
    • /
    • pp.157-166
    • /
    • 2008
  • Until 1960, the major housing type of rural area in Korea was traditional wooden frame building, which was made of natural materials. In the course of modernization and New Village Movement, most of traditional houses have been renovated focusing on changing roof material of rice straw into slate, keeping existing main wooden structure. And then from around 1980, by economical development the new houses have been constructed. On these three phases of traditional type, remodeling type and new construction type, the natural materials of housing facade as wood, soil, stone and plant changed into artificial materials as cement, chemical material and paint. At the same time the exterior color of housing also have been changed and varied. The purpose of this thesis is to find out the changing aspect of exterior color by comparing remodeled and new constructed housing with of traditional housing. The exterior color of one hundred and fifty seven houses were surveyed and the three color attributes of each part of facade, as roof, wall and window, were analyzed and compared. In case of traditional houses, 98.3% of color are concentrated on the warm color of Y and YR on HUE scale, and 88% of their color are low Chroma. And Value of their color has been varied and spreaded from low to high Value scale. From traditional types to remodeled and new constructed houses, the concentration ratio of warm color on Hue scale reduced from 98.3% to 68.7% and ratio of low Chroma was also changed from 88% to 73.2% and the ratio of low Value color reduced from 51.9% to 29.7%. The exterior color of houses in rural area varied on Hue, and the more saturated colors were used and they became brighter compared with color of traditional houses. It is expected that the results of this study can be used for basic data of exterior color planning and improvement into harmonized color with natural environment.

Optimal intensity measures for probabilistic seismic demand models of RC high-rise buildings

  • Pejovic, Jelena R.;Serdar, Nina N.;Pejovic, Radenko R.
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.221-230
    • /
    • 2017
  • One of the important phases of probabilistic performance-based methodology is establishing appropriate probabilistic seismic demand models (PSDMs). These demand models relate ground motion intensity measures (IMs) to demand measures (DMs). The objective of this paper is selection of the optimal IMs in probabilistic seismic demand analysis (PSDA) of the RC high-rise buildings. In selection process features such as: efficiency, practically, proficiency and sufficiency are considered. RC high-rise buildings with core wall structural system are selected as a case study building class with the three characteristic heights: 20-storey, 30-storey and 40-storey. In order to determine the most optimal IMs, 720 nonlinear time-history analyses are conducted for 60 ground motion records with a wide range of magnitudes and distances to source, and for various soil types, thus taking into account uncertainties during ground motion selection. The non-linear 3D models of the case study buildings are constructed. A detailed regression analysis and statistical processing of results are performed and appropriate PSDMs for the RC high-rise building are derived. Analyzing a large number of results it are adopted conclusions on the optimality of individual ground motion IMs for the RC high-rise building.

A Subsurface Environment Management System Combining Computational Model and Spatial Information System (전산모형 및 공간정보시스템을 결합한 지하환경관리시스템의 개발 및 적용)

  • Kim, Joon-Hyun;Han, Young-Han
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.2
    • /
    • pp.99-108
    • /
    • 2001
  • This study was performed to develop an information processing system for the sound conservation of soil and groundwater resources. The system contains numerical models and geographic information systems for underground flow and contamination. Multidimensional Finite Element Model for Subsurface Environment (MFEMSE) was invented to analyze underground flow and pollution problems of water and gas phases. Newly developed and conventional models (MODFLOW, MOC3D, MT3D, PMPATH, PEST, UCODE) were integrated with GIS (ArcView) for the construction of an integrated information management system of subsurface environment. This system was applied to the management of three mineral water companies located in clean high mountain basin. Desirable management criteria and operational strategies were suggested using this system. The system was constructed to be applied for the broad sense of decision supporting tools in related topics of this study, so that it can be used not only for the prevention regulations, but also for clean up projects.

  • PDF

Transformation of Endocrine Disrupting Chemicals (EDCs) by Manganese(IV) Oxide (망간산화물을 이용한 내분비계장애물질의 변환에 관한 연구)

  • Lee, Seung-Hwan;Choi, Yong-Ju;Chung, Jae-Shik;Nam, Taek-Woo;Kim, Young-Jin;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.44-50
    • /
    • 2009
  • The occurrence of endocrine disrupting compounds (EDCs), chemicals that interfere with human hormone system, are increasing in the freshwater, waste water and subsurface as well. In this study, we determined the reactivity of three EDCs in the presence of birnessite. In aqueous phase, bisphenol A, 2,4-dichlorophenol and 17${\beta}$-estradiol, which possesses phenoxy-OH, were very rapidly transformed by birnessite: up to 99% of initial concentrations (50 mg/L for bisphenol A, 100mg/L for 2,4-dichlorophenol, and 1.5mg/L for 17${\beta}$-estradiol) were destroyed within 60 minutes. Especially, bisphenol A was the most reactive chemical, disappearing by 99% in a few minutes. The reaction occurred on the surface of birnessite, showing a linear increase of first-order kinetic constants with the increase of the surface area of birnessite. In soil slurry phase, the reactivity of birnessiteto EDCs was faster than in aqueous phase probably due to the cross coupling reaction of phenoxy radicals with soil organic matter. Considering the rapid transformation of the EDCs in the both phases, this oxidative cross coupling reaction mediated by birnessite would be an effective solution for the remediation of EDCs in environmental media, especially in soil.

A Comprehensive Groundwater Modeling using Multicomponent Multiphase Theory: 1. Development of a Multidimensional Finite Element Model (다중 다상이론을 이용한 통합적 지하수 모델링: 1. 다차원 유한요소 모형의 개발)

  • Joon Hyun Kim
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.89-102
    • /
    • 1996
  • An integrated model is presented to describe underground flow and mass transport, using a multicomponent multiphase approach. The comprehensive governing equation is derived considering mass and force balances of chemical species over four phases(water, oil, air, and soil) in a schematic elementary volume. Compact and systemati notations of relevant variables and equations are introduced to facilitate the inclusion of complex migration and transformation processes, and variable spatial dimensions. The resulting nonlinear system is solved by a multidimensional finite element code. The developed code with dynamic array allocation, is sufficiently flexible to work across a wide spectrum of computers, including an IBM ES 9000/900 vector facility, SP2 cluster machine, Unix workstations and PCs, for one-, two and three-dimensional problems. To reduce the computation time and storage requirements, the system equations are decoupled and solved using a banded global matrix solver, with the vector and parallel processing on the IBM 9000. To avoide the numerical oscillations of the nonlinear problems in the case of convective dominant transport, the techniques of upstream weighting, mass lumping, and elementary-wise parameter evaluation are applied. The instability and convergence criteria of the nonlinear problems are studied for the one-dimensional analogue of FEM and FDM. Modeling capacity is presented in the simulation of three dimensional composite multiphase TCE migration. Comprehesive simulation feature of the code is presented in a companion paper of this issue for the specific groundwater or flow and contamination problems.

  • PDF

Characteristics of Soil Water Runoff and Percolation in Sloped Land with Different Soil Textures (경사지 토양에서 강우량과 토성에 따른 물 유출 및 침투 특성)

  • Lee, Hyun-Haeng;Ha, Sang-Keon;Hur, Seung-Oh;Jung, Kang-Ho;Kim, Won-Tae;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.268-273
    • /
    • 2006
  • Soil loss induced by erosion has come to be a serious problem in Korea's sloped land since more than 70% of upland fields are located on the sloped land area. The purpose of this study was to investigate the phase of water flow in differently soil textured plot soil types by rainfall amount. Lysimeters with slope of 15%, 5 m in length, 2 m in width, and 1 m in depth were prepared and filled up with three different soil textures, such as sandy loam, loam, and clay loam, then relationships between seasonal rainfall and runoff, percolation were analyzed. Runoff and percolation rate were shown to increase linearly with increasing rainfall intensity in all the soil textures, but the starting threshold and increment rate in runoff and percolation occurrence were dependent differently upon soil textures. Percolation increment rate according to the increasing rainfall amount was 0.52, 0.36, and 0.57 for sandy loam, loam and clay loam soil respectively. The threshold rainfall amounts in which percolation occurs were 5.73 mm, 6.80 mm, and 12.86 mm for sandy loam, loam and clay loam respectively. Runoff increment rates were 0.42, 0.48 and 0.46 for sandy loam, loam and clay loam soil. The threshold rainfall amount in which runoff occurs was 10.50 mm in sandy loam, 7.76 mm in loam and 17.40 mm in clay loam. These different phases of water flow by soil texture could be used to suggest guidelines for the best management practice of the farming slope land.