• Title/Summary/Keyword: THF

Search Result 366, Processing Time 0.022 seconds

CO2 Absorption Characteristics of Physical Solvent at High Pressure (고압에서 물리흡수제의 이산화탄소 흡수 특성 연구)

  • Eom, Yongseok;Kim, Eunae;Kim, Junhan;Chun, Sungnam;Lee, Jungbin
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.4
    • /
    • pp.334-339
    • /
    • 2013
  • In this study, as a candidate of the carbon dioxide ($CO_2$) absorbents, the mixture solution of polyethylene glycol dimethyl ether (PEGDME) and tetrahydrofuran (THF) were investigated. $CO_2$ absorption rate was measured by using high pressure $CO_2$ screening equipment in the range of 1 - 10wt% THF. Absorption capacity of the mixture solution was also estimated. Based on the results, we found that mixture solution containing THF had higher absorption rate and $CO_2$ loading capacity compared to PEGDME at $25^{\circ}C$.

Preparation of Pore-filled Anion-exchange Membrane with PVDF and Poly(vinylbenzylchloride)

  • Park, Byungkyu;Byungpyo Hong;Kwangsoo Yu;Hongsik Byun
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.207-210
    • /
    • 2004
  • The pore-filled anion-exchange membranes were prepared in this study with an asymmetric poly(vinylidene fluoride)(PVDF) membrane as a nascent membrane and poly(vinylbenzyl chloride)(PVBCl) as a polyelectrolyte. The solution of PVBCI having the chloromethylate aryl ring of 80 percents and 1,4-diaminobicyclo [2,2,2]octane(DABCO) was made with the solvent of tetrahydrofuran(THF) and N,N-Dimethylformamide(DMF), which is in the rotio of 8:2. A new preparation method in this study, i.e. in-situ crosslinking, enabled us to produce the pore-filled membranes without change of size, and to control the properties of final membrane with various degree of cross-linking. From the result of surface morphologies of SEM and AFM the polyelectrolyte exists in the pores of nascent membrane as a certain configuration. From the investigation of the solvent affecting much to the permeability and rejection, it was found. that the membranes using DMF and THF showed better performances than the membranes produced by THF only. The water permeability of the final membrane at low pressure(100㎪) showed a typical ultrafiltation membrane's permeability (8-10kg/㎡hr) and good values of rejection(55∼60 percent).

Selective Dispersion of Carbon Nanotubes by Octadecylainine (옥타데실아민(octadecylamine)을 이용한 탄소나노튜브의 선택적 분산)

  • Lee Kwang-Hoon;Park Hoon;Chae Hee-Baik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.1
    • /
    • pp.27-32
    • /
    • 2006
  • We separated semiconducting single-walled carbon nanotubes(sem-SWCNT) from the HiPco-SWCNTS by dispersion with octadecylamine(ODA). The mixture of acid-treated SWCWTS and ODA was heated at $120^{\circ}C$ for 120hours. ODA physisorbs selectively on the side-wall of sem-SWCNTS. The ODA-treated CNTs were dispersed in tetrahydrofuran(THF) via sonication. The ODA-physisorbed sem-SWCNT can be retained in the supernatant of THF, but met-SWCNT and unabsorbed sem-SWCNT were precipitated in THF. Raman spectra with 514 nm and 1074 nm were investigated. The amount of sem-SWCNT in the supernatant and precipitant was about 94 % and 50 %, respectively.

  • PDF

Electronic Absorption and Raman Spectroscopic Studies of ${\alpha},{\omega}$-Diphenylpolyenyl Anions with Odd Number of Polyene Carbons

  • Kim, Jin Yeol;Kim, Eung Ryeol;Ju, Jae Beom
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.837-841
    • /
    • 2001
  • The electronic absorption and Raman spectra of $\alpha\omega-diphenylpolyenyl$, anions Ph(CH)nPh- (DPn- , n = 3, 5, 7, 9, and 13), with odd number of carbons at the polyene part, have been studied in the tetrahydrofuran (THF) solutions and in their solid film states, respectively. In the case of Raman spectra for DPn- , the frequencies and relative intensities of some Raman peaks regularly change with the increase of polyene chain length. The spectral patterns of anions (DPn- ) are very similar with those of radical anion (DPn${\cdot}$- ). However, the C=C stretching peaks of DPn- anions are observed in the 25-35 cm-1 higher frequency region than those of DPn${\cdot}$- radical anions. In the case of long chain models such as DP9- and DP13- , the C=C stretching peaks are observed in even higher frequency region than those of the corresponding neutral polyenes such as DP8, DP10, and DP12. The Raman patterns of DPn- anions in the THF solutions are similar with those in their solid film states. On the other hand, their electronic absorption spectra show a considerable difference each other. The n- ${\pi}*$ electronic absorption bands of DPn- anions in the THF solutions have been observed in the 0.27-0.39 eV lower energy region than those in their solid film states due to the solvent effects on polyene anions.

Preparation and Application of Pore-filled PVDF ion Exchange Membranes (Pore-filled PVDF 이온교환막의 제조 및 응용)

  • 변홍식;박병규;홍병표;여광수;윤무홍;강남주
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.108-116
    • /
    • 2004
  • In this study, the pore-filled ion-exchange membranes were prepared by using the asymmetric PVDF membrane as a nascent membrane. First, the solution of PVBCI having the chlorornethylate aryl ring of 80 percents and DABCO was made with the mixed solvent of THF and DU (8:2). These mixed solution was then, filled in the pores of PVDF membrane, and left for a day to complete the gelation. Finally the pore-filled anion-exchange membrane is obtained fallowed by the amination of the remaining chloromethyl groups with trimethylamine (TMA, 40 wt% in water) forming the positive ammonium ion sites. This 2 step procedure enabled us to produce the pore-filled membranes without change of size, and to control the properties of final membrane with various degree of cross-linking. The results of SEM and AFM showed the polyelectrolyte existed in the pores of nascent membrane as a certain configuration. From the investigation of the solvent affecting much to the permeability and rejection, it was found that the membranes using mixed solvent of THE and DMF (8:2) showed better performances than the membranes produced by THF only. The result of an investigation for the water permeability of the final membrane at low pressure (100 Kpa) showed a typical ultrafiltration membrane's permeability (8 ∼ 10 kg/$m^2$hr) and good values of rejection (55∼60 percent).

Retention Behavior of Poly(Ethylene-co-Vinyl Acetate)s in Thermal Field-Flow Fractionation (열장 흐름 분획법에서 에틸렌-아세트산 비닐 혼성중합체들의 머무름거동에 관한 연구)

  • Jeon, Seon Ju;Jo, Gyeong Ho;Lee, Dae Un;Mun, Myeong Hui
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.6
    • /
    • pp.427-434
    • /
    • 1994
  • The retention behaviors of poly(ethylene-co-vinyl acetate)s have been studied by thermal field-flow fractionation(ThFFF) with respect to effective separation and characterization of thermal diffusion coefficients($D_{\tau}$) as one of the physicochemical properties of polymers. The eight copolymers are different in vinyl acetate composition ranging from 25% to 70% and in molecular weight ranging from 110,000 to 285,000. The carrier solvents are THF, toluene and chlorobenzene which have different viscosities and thermal conductivities. It is shown that the retention of a copolymer is dependent on the type of the carrier, the molecular weight and chemical composition of the copolymer. The results show that the retention of a copolymer increases when either vinyl acetate composition or the molecular weight increase. $D_{\tau}$ values measured by experiments vary from 1.36∼5.97 $\cm^2/(s.K)$ depending on the copolymer composition and the type of the carrier solvent. These values increase $(r^2{\geq}0.928)$ with increase of weight % of vinyl acetate. THF is found to be the proper carrier solvent for separation of copolymers employed in this study due to the fact that a $D_{\tau}$ value greatly changes with variation of copolymer composition. From the above results, ThFFF can be used for separation of copolymers with similar molecular sizes but different compositions.

  • PDF