• Title/Summary/Keyword: THERMAL COMFORT

Search Result 704, Processing Time 0.023 seconds

Evaluation of Thermal Comfort and Cooldown Performance inside Automotive Cabin according to Air-conditioning Vent Location (인체모델을 고려한 자동차 실내의 에어컨 토출구 위치 변화에 따른 냉방성능 및 온열쾌적성 평가)

  • Seo, Jin-Won;Park, Jae-Hong;Choi, Yun-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.120-129
    • /
    • 2012
  • As the recent advancement of automobile industry, there has been a great interest in the thermal comfort of the passengers inside the cabin of an automobile. Thermal comfort is affected by temperature, velocities, and mean radiation temperature of air, thermal resistance of clothes and physical active level of human. The present study performed computational analysis to select the location of air-conditioning vent that improves thermal comfort inside the cabin. In order to do this, we considered various air vent positions, and thermal flow analysis of each case is performed using CFD for the cabin with four passengers. The thermal comfort is evaluated using the computational results and the optimum location of air vent is suggested.

Evaluation of Indoor Thermal Comfort for Ceiling Type System Air-Conditioner with Various Discharge Angles (천장형 시스템 에어컨의 토출방향 변화에 따른 실내 열쾌적성 평가)

  • Lee, Jin-Hyung;Kim, You-Jae;Choi, Weon-Seok;Park, Sung-Kwan;Youn, Baek;Kim, Youn-Jea
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1180-1185
    • /
    • 2006
  • Modern people spend most of time at indoor space, such as office or classroom. Especially, occupants are exposed to the airtight indoor air quality (IAQ) for a long time, At present, many studies on the air-conditioning systems are more focused on the individual thermal comfort than the thermal efficiency due to increase of the concern of health. There are several factors which are influenced thermal comfort, such as temperature, humidity, convection and air movement, etc. Also, the individual factor, such as age, gender, Physical constitution and habit, should be considered. The 4-way cassette type air conditioner is known to bring out better performance about thermal comfort than the traditional one. This study is performed on the higher ceiling environment than the common buildings or classrooms. Also, this study analyzed on the Indoor thermal comfort by diffusing direction of 4-way cassette air conditioner with various discharge angles, $45^{\circ},\;50^{\circ},\;55^{\circ}$ and $60^{\circ}$. Using a commercial code, FLUENT, three-dimensional transient air thermal flow fields are calculated with appropriate wall boundary conditions and standard $k-{\epsilon}$ turbulence model. Results of velocity and temperature distributions are graphically depicted with various discharge angles.

  • PDF

Environmental Modeling and Thermal Comfort in Buildings in Hot and Humid Tropical Climates

  • Muhammad Awaluddin Hamdy;Baharuddin Hamzah;Ria Wikantari;Rosady Mulyadi
    • Architectural research
    • /
    • v.25 no.4
    • /
    • pp.73-84
    • /
    • 2023
  • Indoor thermal conditions greatly affect the health and comfort of humans who occupy the space in it. The purpose of this research is to analyze the influence of water and vegetation elements as a microclimate modifier in buildings to obtain thermal comfort through the study of thermal environment models. This research covers two objects, namely public buildings and housing in Makassar City, South Sulawesi Prov-ince - Indonesia. Quantitative methods through field surveys and measurements based on thermal and personal variables. Data analysis based on ASHRAE 55 2020 standard. The data was processed with a parametric statistical approach and then simulated with the Computational Fluid Dynamics (CFD) simulation method to find a thermal prediction model. The model was made by increasing the ventilation area by 2.0 m2, adding 10% vegetation with shade plant characteristics, moving water features in the form of fountains and increasing the pool area by 15% to obtain PMV + 0.23, PPD + 8%, TSV-1 - +0, Ta_25.7℃, and relative humidity 63.5 - 66%. The evaluation shows that the operating temperature can analyze the visitor's comfort temperature range of >80% and comply with the ASHRAE 55-2020 standard. It is concluded that water elements and indoor vegetation can be microclimate modifiers in buildings to create desired comfort conditions and adaptive con-trols in buildings such as the arrangement of water elements and vegetation and ventilation systems to provide passive cooling effects in buildings.

Evaluation of the Thermal Environment and Comfort in Apartment complex using Unsteady-state CFD simulation (Unsteady-state CFD 시뮬레이션을 이용한 여름철 공동주택 외부공간의 온열환경 및 쾌적성 평가)

  • Jeon, Mi-Young;Lee, Seung-Jae;Kim, Ji-Yoeng;Leigh, Seung-Bok;Kim, Taeyeon
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.67-73
    • /
    • 2010
  • As more and more people desire to live in an apartment complex with a comfortable outdoor space, many construction company became interested in outdoor design. In order to increase the use of outdoor space and create the most pleasant environment, outdoor thermal environment and comfort should be evaluated quantitatively from the design stage. This study utilized ENVI-met 3.1 model to analyze outdoor thermal environment in apartment complex, and evaluated outdoor thermal comfort in 6 points of apartment complex. The physiologically equivalent temperature(PET) was employed as a outdoor thermal index. Playground B had a poor thermal environment with the maximum PET $43^{\circ}C$ (Very hot). Because shading by building and tree didn't affect outdoor thermal environment of playground B. To design comfortable outdoor space from the view point of thermal environment, the factors influencing Mean radiant temperature(MRT) and wind speed should be considered in design stage. Since it is difficult to control outdoor thermal environment compared with indoor environment, we should take into account an assessment for outdoor thermal environment and comfort in outdoor design stage.

The Study on Indoor Thermal Environment during Convection Heating - Thermal Comfort Sensation for Vertical Temperature Differences - (대류 난방시 실내열환경에 관한 연구 -상하온도차에 대한 온열쾌적감-)

  • Kim Dong-Gyu;Kum Jong-Soo
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.215-220
    • /
    • 2005
  • Thermal neutrality is not enough to achieve thermal comfort. The temperature level can be the optimal, and still people may complain. This situation is often explained by the problem of local discomfort. Local discomfort can be caused by radiant asymmetry, local air velocities, too warm and too cold floor temperature and vertical temperature difference. This temperature difference may generate thermal discomfort due to different thermal sensation in different body parts. Therefore, thermal comfort can not be correctly evaluated without considering these differences. This study investigates thermal discomfort sensations of different body parts and its effect on overall thermal sensation and comfort in air-heating room. Experimental results of evaluating thermal discomfort at different body parts in an air-heating room showed that thermal sensation on the shoulder was significantly related to the overall thermal sensation and discomfort. Although it is known that cool-head, warm-foot condition is good for comfort living, cool temperature around the head generated discomfort.

A Experimental Study for Developing of the Dry Double Floors Hydronic Ondol System (건식이중바닥온돌시스템 개발을 위한 실험적 연구)

  • Kim Nan-Haeng;Sohn Jang-Yeul
    • Journal of the Korean housing association
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 2006
  • The aim of the research was to evaluate the characteristics of thermal environment and thermal comfort in the Dry Double floors Hydronic Ondol System. Physical indoor thermal environments (the floor surface temperature, the vertical temperature, etc.) and skin temperature have especially been measured. Physical features conditions, sensation, thermal comfort, humidity sensation, comfort of body were investigated for the survey. As a result, (1) During the operation of the boiler (12 hour), the average indoor temperature is appeared to be $21.6^{\circ}C$. The floor surface temperature showed peak value of $31.4{\sim}40.6^{\circ}C$ after 8hours 30minutes after the start-point of the heating. The vertical difference of temperature was turned out to be not uniform. (2) While the skin temperature showed a narrow distribution of temperature in the Dry Double floors Hydronic Ondol system. (3) The response to thermal comfort which people felt was satisfactory, and most of them felt dry during the test.

Development of thermal comfort measurment system to establish emotion and sensibility engineering data base (감성공학 DB 구축을 위한 열적쾌적성 측정 시스템 개발)

  • 한화택;박명규;이성수;천효성;박성준
    • Science of Emotion and Sensibility
    • /
    • v.6 no.1
    • /
    • pp.33-37
    • /
    • 2003
  • The objective of the present study is to develop a thermal comfort measurement system for ergonomic sensibility analysis. The system can measure basic components for thermal comfort, such as skin temperature and clothing temperature/humidity level. A study on the linearization of temperature and humidity sensors has been conducted for more accurate and stable sensor development. The software has been developed for thermal comfort analysis for both clothing thermal environments and indoor environments.

  • PDF

Comparison of Indoor Thermal Environments in Winter depending on Supply Vent Configurations (급기구 형상에 따른 겨울철 실내 온열환경의 비교)

  • Han, Hwa-Taik;Jeong, Young-Kyun
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.970-975
    • /
    • 2008
  • This study considers indoor thermal comfort in an ondol space by supply vent configurations to prevent cold draft in winter. A specially-designed vent cap has been investigated in comparison with a round pan-type vent and a simple opening without a cap. Numerical simulations have been conducted using CFD to analyze thermal comfort indices such as Predicted Mean Vote (PMV) and Effective Draft Temperature (EDT) as well as air distribution index i.e. Air Diffusion Performance Index (ADPI). Results show the new vent cap provides improved thermal comfort conditions especially near ondol heated floor, as the cold outdoor air spreads upwards along the vertical wall before reaching occupant region near floor. This paper includes discussions on the flow and comfort distributions created by the thermal jets from the vents.

  • PDF

Numerical Study on Human Thermal Comfort in a Passenger Train (기차 승객의 온열 쾌적성에 관한 수치해석)

  • Kim, Man-Hoe
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.82-89
    • /
    • 2016
  • This paper presents computational fluid dynamics (CFD) analysis on passenger thermal comfort in a train. Human thermal comfort in vehicles depends mainly on air temperature, mean radiant temperature, air velocity, humidity, and direct solar flux, as well as the level of activity and thermal properties of clothing and seat. The velocity and temperature distribution in a train with and without passengers are reported. The thermal comfort in a passenger train are also presented based on PMV and PPD indices with 16 segments of the human body.

Research on Thermal Comfort by Increasing Air Conditioner Temperature (에어컨 온도상승에 따른 온열쾌적성 변화에 관한 연구)

  • Kim, Hyung-Chul;Kum, Jong-Soo;KIM, Dong-Gyu;CHUNG, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.18 no.2
    • /
    • pp.77-84
    • /
    • 2006
  • This research evaluates thermal comfort by comparing the case of maintain cooing temperature of room with the case of raising it at the point of time that human body begins to adapt. An experiment uses constant temperature & humidity chamber 2 places. Pretesting room make up summer season environment, the testing room control by air-conditioner. In condition that maintain temperature of $33^{\circ}C$. The subjects stay in the pretesting room during the 30 minute for the heat storage amount of the normal summertime. The subjects stay in the testing room under each case (case 1: maintaining $24^{\circ}C$, case 2: maintaining $26^{\circ}C$, case 3: up $1^{\circ}C$ after maintaining $24^{\circ}C$ during 30 minute, case 4: up $1^{\circ}C$ after maintaining $26^{\circ}C$ during 40 minute). 1. Result of comparison of case 1 and case 2 appears that thermal sensitive vote examine from slight cool to cool and thermal comfort examine slight comfort by temperature rise at human body adaptation point of time.2. Test of case 3 and case 4 appear similar value at thermal sensitive vote and thermal comfort.3. Through the case 2 and case 4, continuous thermal comfort maintain at $24^{\circ}C$, if raise $26^{\circ}C$, same thermal comfort maintain after a human body adaptation temperature rising effect bring energy saving.