• Title/Summary/Keyword: THERMAL AGING

Search Result 622, Processing Time 0.033 seconds

The Variation of Thermal Cycle on the Transformation Temperature and Mechanical Properties of CuZnAi Shape Memory Alloy (CuZnAI형상기억합금의 변태온도에 미치는 열사이클 및 기계적성질 변화)

  • Yang, Gwon-Seung;Park, Jin-Seong;Gang, Jo-Won
    • Korean Journal of Materials Research
    • /
    • v.4 no.5
    • /
    • pp.524-534
    • /
    • 1994
  • The effects of transformation temperature and mechanical properties by thermal cycle of CuZnAl shape memory alloy with a small of misch metal and Zr contents were investigated. The addition of misch metal and Zr was very effective for reducing the grain size. After solution treatment, the specimens were post-quench aged or step quenched at $100^{\circ}C$ to $350^{\circ}C$ for variation of Rockwell hardness value. It was found that the Rockwell hareness value was very increased at $200^{\circ}C$ and $250^{\circ}C$. The fracture strength and ductility have been significantly increased with the increase of misch metal conten when tensile tested below $M_f$ temperature. Also, the fracture strength has been more increased in the case of post quench aging treatment than that of the as-quenching treatment. Aging of the $\beta$-phase decreases the $M_s$ temperature, but that of the martensite phase increases the $A_s$ temperature. The change in $A_s$ temperature with post-quench aging can be attributed to recovery of order in the $\beta$phase. The hystersis of transformation temperature ($A_s-M_s$) has an increasing tendency by thermal cycles.

  • PDF

Influence of Reinforcing Systems on Thermal Aging Behaviors of NR Composites (충전 시스템이 NR 복합체의 열노화 거동에 미치는 영향)

  • Choi, Sung-Seen;Kim, Jong-Chul
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.237-244
    • /
    • 2011
  • Five natural rubber (NR) composites with different reinforcing systems of unfilled, carbon black, carbon black with silane coupling agent, silica, and silica with silane coupling agent were thermally aged and change of the crosslink densities by the accelerated thermal aging was investigated. The crosslink densities on the whole increased as the aging time elapsed irrespective of the reinforcing systems. The crosslink density changes became noticeable by increasing the aging temperature. For carbon black-filled composites, the silane coupling agent made the crosslink density change to be increased. For silica-filled composites, however, the silane coupling agent made the crosslink density increment reduced at 60 and $70^{\circ}C$ and it hardly affect the degree of the crosslink density change at 80 and $90^{\circ}C$. The activation energies for the crosslink density changes of the carbon black-filled samples increased continuously in a logarithmic fashion, whereas that of the silica-filled one showed a quasi-steady state ranges at aging times of 30-150 days. The activation energy of the unfilled sample increased exponentially with the aging time. The experimental results were explained with sulfur donation from the silane coupling agent, surface modification of the filler by the silane coupling agent, adsorption of curative residues on the silica surface, and release of the adsorbed curative residues.

Studies on the Deactivation-resistant Ru Catalyst (Ru 촉매의 비활성화 억제를 위한 연구)

  • Kim, Young-Kil;Yie, Jae-Eui;Cho, Sung-June;Ryoo, Ryong
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.808-818
    • /
    • 1994
  • Effects of ceria additive on the activity and thermal aging behavior of supported Ru catalysts were investigated using Ru/${\gamma}$-$Al_2O_3$and Ru/$CeO_2$-${\gamma}$-$Al_2O_3$. The catalysts were characterized by $^{129}Xe$-NMR and $H_2$ chemisorption. The cataltic activity for conversion of CO, HC and $NO_x$ was measured using simulated automobile engine exhausts under lean, rich and stoichiometric conditions. For both fresh and aged catalysts, Ru/$CeO_2$-${\gamma}$-$Al_2O_3$ was more active than Ru/${\gamma}$-$Al_2O_3$ for all three pollutants. Results of $^{129}Xe$-NMR and $H_2$ chemisorption indicated that sintering of Ru particles occurred to the same extent for both catalysts during the thermal aging process. After thermal aging at 673K, however, the catalytic activity of the aged Ru/$CeO_2$-${\gamma}$-$Al_2O_3$ was substantially higher than that of the fresh one, while the activity of Ru/${\gamma}$-$Al_2O_3$ decreased after the thermal aging. This finding may suggest new active sites were created during the thermal aging, probably in the vicinity of the interface between Ru and Ce. For more quantitative investigation of the effect of a cation such as Ce on the thermal aging of Ru metal particles, Ru catalysts supported on cation-exchanged Y-zeolites were used as the model catalysts. The results indicated that when Ba, Ca, La, Y or Ce was used for the cation exchange, the exchanged cation did not affect the thermal aging behavior of Ru in Y-zeolite, as evidenced by $^{129}Xe$-NMR and EXAFS.

  • PDF

Effect of Aging Heat Treatment on the Mechanical Properties in Inconel 718 Alloy (Inconel 718 합금의 시효열처리가 기계적 성질에 미치는 영향)

  • Kang, Hee Jae;Kim, Jung Min;Jee, Sung Hwan;Sung, Jie Hyun;Kim, Young Hee;Sung, Jang Hyun;Jeon, Eon Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.271-277
    • /
    • 2013
  • Inconel 718 super alloy was aging heat treated at the temperature range from $675^{\circ}C$ to $785^{\circ}C$ for 5~40 hours after solution annealing at $1025^{\circ}C$ for 1 hour. The aging treated specimens were investigated microstructure, mechanical properties and thermal expansion/contraction. Precipitates appeared for a long time aging treatment were niobium carbide and also ${\gamma}^{\prime}$ phase. For the aging treatment time of 10 hours, the changes in strength and hardness with increasing aging treatment temperature showed the maximum value at the temperature of $725^{\circ}C$. This maximum value is to be related with the precipitation of ${\gamma}^{\prime}$ and ${\gamma}^{{\prime}{\prime}}$ phases. The decrease in strength, elongation and hardness during long time aging at $725^{\circ}C$ were thought to be induced from the coarsening of the grain size and the transformation of ${\gamma}^{{\prime}{\prime}}$ phase to ${\gamma}^{\prime}$ phase. For the specimens treated for 10 hours, impact energy showed constant value of ~105 J with increasing the aging temperature, however this value continuously decreased with elapsing time at the aging temperature of $725^{\circ}C$. It was found that the decrease in impact value was induced from the coarsening of grain size and the carbide coarsening. The coefficient of thermal expansion of aging treated Inconel 718 alloy increased with raising test temperature, and the coefficient was appeared $11.57{\sim}12.09{\mu}m/m{\cdot}^{\circ}C$ and $14.28{\sim}14.39{\mu}m/m{\cdot}^{\circ}C$, respectively, after heating to $150^{\circ}C$ and $450^{\circ}C$.

Evaluation of the Impact Shear Strength of Thermal Aged Lead-Free Solder Ball Joints (열시효 처리된 무연 솔더 볼 연결부의 충격 전단강도 평가)

  • Chung, Chin Sung;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.7-11
    • /
    • 2015
  • The present study investigates the impact shear strength of thermal aged Sn-3Ag-0.5Cu lead-free solder joints at impact speeds ranging from 0.5 m/s to 2.5 m/s. The specimens were thermal aged for 24, 100, 250 and 1000 hours at $100^{\circ}C$. The experimental results demonstrate that the shear strength of the solder joint decreases with an increase in the load speed and aging time. The shear strength of the solder joint aged averagely decreased by 43% with an increase in the strain rate. For the as-reflowed specimens, the mode II stress intensity factor ($K_{II}$) of interfacial IMC between Sn-3.0Ag-0.5Cu and a copper substrate also was found to decrease from $1.63MPa.m^{0.5}$ to $0.97MPa.m^{0.5}$ in the speed range tested here. The degradations in the shear strength and fracture toughness of the aged solder joints are mainly caused by the growth of IMC layers at the solder/substrate interface.

The Thermal Stability of Mechanically Alloyed Quaternary Al-8wt.%(Ti+V+Zr) Alloys (기계적 합금화한 Al-8wt.%(Ti+V+Zr) 4원계 합금의 열적 안정성에 관한 연구)

  • 김주영
    • Journal of Powder Materials
    • /
    • v.2 no.3
    • /
    • pp.247-254
    • /
    • 1995
  • The theoretical optimum quaternary composition for improving the thermal stability of Al-Ti alloy was recently proposed. On the basis of the suggestion, quaternary Al-Ti-V-Zr alloy powders corresponding to the optimum compositions, one of which belongs to the region of the smallest lattice misfit between the matrix and the precipitates and the other belongs to the region of the smallest rate constant of coarsening, were prepared by mechanical alloying and the powders were vacuum-hot-pressed at $430^{\circ}C$ under the pressure of 800 MPa. The thermal stability of the specimens was evaluated by hardness testing after isothermal aging up to 400 hrs at various temperatures. The decrease of hardness of Al-Ti-V-Zr alloys was smaller than that of Al-Ti alloys. It was considered to be due to the formation of $Al_3Zr$ type and$Al_3Ti$ type quaternary precipitates having smaller lattice misfit than $Al_3Ti$ and the increase of volume fraction of All0v during the isothermal aging. The quaternary Al-Ti-V-Zr alloys corresponding to the smallest lattice misfit showed the most improved thermal stablilty and it was mainly considered to be due to the formation of All0v.

  • PDF

Study on Accelerated Life-time Test of O-ring Rubber by Thermal Stress (열 스트레스에 의한 고무 오링의 가속수명시험에 관한 연구)

  • Shin, Young-Ju;Chung, Yu-Kyung;Choi, Kil-Yeong;Shin, Sei-Moon
    • Journal of Applied Reliability
    • /
    • v.7 no.1
    • /
    • pp.31-43
    • /
    • 2007
  • The function of O-ring seals is to prevent leakage during the service life of the components in which they are installed. The life prediction of O-ring is very important at various industry fields. Generally, to evaluated the long-term performance of O-ring in severe environments has applied a life prediction technique based on accelerated life test (ALT). In this work, Accelerated thermal aging test(l20, 130, 140, $150^{\circ}C$) of O-ring was applied for life prediction of O-ring. The property changes after thermal aging test was measured using TGA, DSC, FT - IR, Video Microscope and SEM. Shape parameter and life prediction were obtained using MINITAB program.

  • PDF