• Title/Summary/Keyword: TGF-$\beta$3

Search Result 408, Processing Time 0.027 seconds

Radiation Effect on NO, NOS and TGF-$\beta$ Expressions In Rat Lung (쥐의 폐에서 방사선이 Nitric Oxide (NO), Nitric Oxide Synthase (NO) 및 TGF- $\beta$의 발현에 미치는 영향)

  • Oh Young-Taek;Park Kwang-Joo;Kil Hoon-Jong;Ha Mahn Joon;Chun Mison;Kang Seung-Hee;Park Seong-Eun;Chang Sei-Kyung
    • Radiation Oncology Journal
    • /
    • v.18 no.4
    • /
    • pp.321-328
    • /
    • 2000
  • Purpose :NOS2 induce NO Production and NO activate TGF-${\beta}$. The TGF-${\beta}$ is a inhibitor of NOS2. If this negative feedback mechanism operating in radiation pneumonitis model, NOS2 inhibitor may play a role in TGF-${\beta}$ suppression. We planned this study to evaluate the expression patterns of NO, NOS2 and TGF-${\beta}$ in vivo radiation pneumonitis model. Materials and Methods : Sixty sprague-Dawley rat were irradiated 5 Gy or 20 Gy. They were sacrificed 3, 7, 14, 28 and 56 days after irradiation. During sacrifice, we peformed broncho-alveolar lavage (BAL). The BAL fluids were centrifuged and supernatents were used for measure NO and TGF-${\beta}$, and the cells were used for RT-PCR. Results : After 5 Gy of radiation, NO in BAL fluid increased at 28 days in both lung and TGF-${\beta}$ in left lung at 56 days. NO increased in BAL fluid at 28 days in both lung after irradiation and TGF-${\beta}$ in right lung at 28-56 days after 20 Gy of radiation. After 5 Gy of radiation, NOS2 expression was increased in right lung at 14 days, in both lung at 28 days and in left lung at 56 days. TGF-${\beta}$ expression was reduced in both lung at 28 days and increased in left lung at 56 days. Conclusions :The Proposed feedback mechanism of NO, NOS2 and TGF-${\beta}$ was operated in vivo radiation pneumonitis model. At 56 days, however, NOS2 and TGF-${\beta}$ expressed concurrently in left lung after 5 Gy and in both lung after 20 Gy of radiation.

  • PDF

The Effect of TGF-{\beta}_1 on Cellular Activity of Periodontal Ligament Cells activated by PDGF-BB (PDGF-BB에 의한 치주인대세포활성에 대한 TGF-{\beta}의 효과)

  • Baek, Sang-Churl;Park, Jin-Woo;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.3
    • /
    • pp.457-473
    • /
    • 2002
  • The purposes of this study is to evaluate the combination effects of TGF-${\beta}_1$ and PDGF-BB on the periodontal ligament cells to use as a regeneration promoting agent of periodontal tissue. Human periodontal ligament cells were prepared from the first premolar tooth extracted for the orthodontic treatment and were cultured in DMEM/100% FBS at the $37^{\circ}C$, 5% $CO_2$ incubator. Authors measured the DNA synthesis, total protein, collagen and noncollagenous protein synthesis according to the concentration of TGF-${\beta}_1$,(1,5ng/ml) and PDGF-BB (1,10 ng/ml) in combination. To explore further this delayed effect of TGF-${\beta}_1$, we preincubated human periodontal ligament cells with TGF-${\beta}_1$ for 4 or 24 hours before PDGF-BB stimulation. The results were as follows: The DNA synthetic activity was increased dose dependently by TGF-${\beta}_1$, PDGF-BB. The combination of TGF-${\beta}_1$ and PDGF-BB consistently enhanced the DNA synthetic activity to PDGF-BB alone. The ability of TGF-${\beta}_1$ to enhance DNA synthetic activity in PDGF-BB treated periodontal ligament cells was dose dependent. The maximum mitogenic effect was at the 5ng/ml of TGF-${\beta}_1$ and l0ng/ml of PDGF-BB. Preincubation of cell with TGF-${\beta}_1$ resulted in significantly greater response to PDGF-BB at all TGF-${\beta}_1$ concentration studied, and may be useful for clinical application in periodontal regenerative procedures. The total protein, collagen and noncollagen synthesis was increased dose pendently by TGF-${\beta}_1$, PDGF-BB. The % of collagen was slightly decreased according to the concentration of TGF-${\beta}_1$, PDGF-BB. The effect of TGF-${\beta}_1$, PDGF-BB were not specific for collagen synthesis since it also increased noncollagenous protein synthesis. This study demonstrates that PDGF-BB is major mitogens for human periodontal ligament cells in vitro, and supports a role for TGF-${\beta}_1$ as a regulation of the mitogenic and total protein formation to PDGF-BB in these cells.

TGF-β Signaling and miRNAs Targeting for BMP7 in the Spleen of Two Necrotic Enteritis-Afflicted Chicken Lines

  • Truong, Anh Duc;Hong, Yeojin;Lee, Janggeun;Lee, Kyungbaek;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Korean Journal of Poultry Science
    • /
    • v.44 no.3
    • /
    • pp.211-223
    • /
    • 2017
  • Transforming growth factor beta ($TGF-{\beta}$) signaling pathways are involved in the regulation of proliferation, differentiation, immunity, survival, and apoptosis of many cells. The aim of this study was to investigate the differential expression of $TGF-{\beta}$-related genes, and their interactions and regulators in the spleen of two genetically disparate chicken lines (Marek's disease resistant line 6.3 and Marek's disease-susceptible line 7.2) induced with necrotic enteritis (NE) by Eimeria maxima and Clostridium perfringens infection. By using high-throughput RNA-sequencing, we investigated 76 $TGF-{\beta}$-related genes that were significantly and differentially expressed in the spleens of the chickens. Approximately 20 $TGF-{\beta}$ pathway genes were further verified by qRT-PCR, and the results were consistent with our RNA sequencing data. All 76 identified genes were analyzed through Gene Ontology and mapped onto the KEGG chicken $TGF-{\beta}$ pathway. Our results demonstrated that several key genes, including $TGF-{\beta}$1-3, bone morphogenetic proteins (BMP)1-7, inhibitor of differentiation (ID) proteins ID1-3, SMAD1-9, and Jun, showed a markedly differential expression between the two chicken lines, relative to their respective controls. We then further predicted 24 known miRNAs that targeted BMP7 mRNA from 139 known miRNAs in the two chicken lines. Among these, six miRNAs were measured by qRT-PCR. In conclusion, this study is the first to analyze most of the genes, interactions, and regulators of the $TGF-{\beta}$ pathway in the innate immune responses of NE afflicted chickens.

Itch E3 Ubiquitin Ligase Positively Regulates TGF-β Signaling to EMT via Smad7 Ubiquitination

  • Park, Su-Hyun;Jung, Eun-Ho;Kim, Geun-Young;Kim, Byung-Chul;Lim, Jae Hyang;Woo, Chang-Hoon
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.20-25
    • /
    • 2015
  • TGF-${\beta}$ regulates pleiotropic cellular responses including cell growth, differentiation, migration, apoptosis, extracellular matrix production, and many other biological processes. Although non-Smad signaling pathways are being increasingly reported to play many roles in TGF-${\beta}$-mediated biological processes, Smads, especially receptor-regulated Smads (R-Smads), still play a central mediatory role in TGF-${\beta}$ signaling for epithelial-mesenchymal transition. Thus, the biological activities of R-Smads are tightly regulated at multiple points. Inhibitory Smad (I-Smad also called Smad7) acts as a critical endogenous negative feedback regulator of Smad-signaling pathways by inhibiting R-Smad phosphorylation and by inducing activated type I TGF-${\beta}$ receptor degradation. Roles played by Smad7 in health and disease are being increasingly reported, but the molecular mechanisms that regulate Smad7 are not well understood. In this study, we show that E3 ubiquitin ligase Itch acts as a positive regulator of TGF-${\beta}$ signaling and of subsequent EMT-related gene expression. Interestingly, the Itch-mediated positive regulation of TGF-${\beta}$ signaling was found to be dependent on Smad7 ubiquitination and its subsequent degradation. Further study revealed Itch acts as an E3 ubiquitin ligase for Smad7 polyubiquitination, and thus, that Itch is an important regulator of Smad7 activity and a positive regulator of TGF-${\beta}$ signaling and of TGF-${\beta}$-mediated biological processes. Accordingly, the study uncovers a novel regulatory mechanism whereby Smad7 is controlled by Itch.

FoxO3a mediates transforming growth factor-β1-induced apoptosis in FaO rat hepatoma cells

  • Kim, Byung-Chul
    • BMB Reports
    • /
    • v.41 no.10
    • /
    • pp.728-732
    • /
    • 2008
  • FoxO3a is a member of the forkhead box class O (FoxO) transcription factor family and an important regulator of apoptosis. This work aimed to elucidate the involvement of FoxO3a in transforming growth factor-${\beta}1$(TGF-${\beta}1$)-induced apoptosis in FaO rat hepatoma cells. TGF-${\beta}1$ caused a time-dependent activation of FoxO3a and a subsequent increase in FoxO response-element-containing luciferase reporter activity, which was Akt-sensitive. The FaO cells stably transfected with a wild type FoxO3a were more susceptible to the formation of apoptotic bodies, populations of sub-G1 apoptotic cells, and collapse of the mitochondrial-membrane potential triggered by TGF-${\beta}1$. In contrast, transfection with small-interfering RNA (siRNA) oligonucleotide specific for FoxO3a significantly inhibited caspase activation in FaO cells treated with TGF-${\beta}1$. It thus appears that FoxO3a plays a crucial mediatory role in the TGF-${\beta}1$ signaling pathway leading to apoptosis.

Study of plasma TGF-β1 level as a useful tumor marker in gastric cancer and prostate cancer (위암 및 전립선암의 종양 표지 인자로서 혈장 TGF-β1에 대한 연구)

  • Lim, Chang Ki;Shin, Hoon;Choi, In Young;Chung, Byung Ha;Ryu, Min Hee;Bang, Yung Jue;Jin, Seung Won
    • IMMUNE NETWORK
    • /
    • v.1 no.3
    • /
    • pp.260-265
    • /
    • 2001
  • Transforming growth $factor-{\beta}1$ ($TGF-{\beta}1$) is a multipotent growth factor affecting development, homeostasis and tissue repair. Many kinds of malignant tissues were reported to overexpress transforming growth $factor-{\beta}1$ ($TGF-{\beta}1$) gene. However, a little work has been done on the circulating $TGF-{\beta}1$ and the association of $TGF-{\beta}1$ with progression in patients with malignant tumors. In this study, we measured the plasma level of $TGF-{\beta}1$ in gastric cancer and prostate cancer patients and evaluated the utility of plasma $TGF-{\beta}1$ as a possible tumor marker. We used Enzyme-linked immunosorbent assay (ELISA) system in order to measure plasma $TGF-{\beta}1$ level in 134 gastric cancer patients, 50 prostate cancer patients and 290 normal controls. And the tumor marker, carcinoembryonic antigen (CEA), prostate-specific antigen (PSA), was compared with $TGF-{\beta}1$ in the aspects of sensitivity and specificity. The mean plasma $TGF-{\beta}1$ levels were $1.219{\pm}0.834$ (0.272-5.772) ng/mL in normal controls, $5.964{\pm}3.218$ (0.845-18.124) ng/mL in gastric cancer and $4.140{\pm}2.345$ (1.108-13.302) ng/mL in prostate cancer. In gastric cancer patients difference in plasma $TGF-{\beta}1$ level was not detected according to cancer stage. In comparison with other tumor marker (CEA, PSA) $TGF-{\beta}1$ is more potent in sensitivity. These results indicate that the plasma $TGF-{\beta}1$ level can be a potent tumor marker in gastric cancer and prostate cancer.

  • PDF

Anti-Fibrotic Effects by Moringa Root Extract in Rat Kidney Fibroblast (모링가 뿌리 추출물에 대한 신장섬유화 억제 효과)

  • Park, Su-Hyun;Chang, Young-Chae
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1371-1377
    • /
    • 2012
  • Fibrosis in kidney by internal and external factors causes progressive loss of renal function. Renal fibrosis is the inevitable consequence of an excessive accumulation of the extracellular matrix. TGF-${\beta}$ plays an important role in the process of renal fibrosis and stimulates the synthesis of profibrotic factors, including collagens, fibronectin, and plasminogen activator inhibitor (PAI-1). We examined the effect of Moringa oleifera Lam (moringa) extracts in a rat kidney fibrosis model. We found that moringa root extract suppresses protein expression/mRNA levels of Type I collagen, fibronectin, and PAI-1 induced by TGF-${\beta}$ in renal fibroblasts. Moringa root extract selectively inhibited phosphorylation of TGF-${\beta}$-induced $T{\beta}RII$ and the downstream signaling pathway (e.g., Smad4), and phospho-ERK, but not JNK, p38, or PI3K/AKT. These results suggest that moringa root extract can act against TGF-${\beta}$-induced renal fibrosis in rat kidney fibroblast cells by a mechanism related to its antifibrotic activity, which regulates expression of fibronectin, Type I collagen, and PAI-1 through $T{\beta}RII$-Smad2/3-Smad4 and ERK. Therefore, moringa root extract is an effective substance for fibrosis therapy and provides a new therapeutic strategy for diseases associated with elevated profibrotic factor synthesis.

Tiul1 and TGIF are Involved in Downregulation of $TGF{\beta}1$-induced IgA Isotype Expression

  • Park, Kyoung-Hoon;Nam, Eun-Hee;Seo, Goo-Young;Seo, Su-Ryeon;Kim, Pyeung-Hyeun
    • IMMUNE NETWORK
    • /
    • v.9 no.6
    • /
    • pp.248-254
    • /
    • 2009
  • [ $TGF-{\beta}1$ ]is well known to induce Ig germ-line ${\alpha}$ ($GL{\alpha}$) transcription and subsequent IgA isotype class switching recombination (CSR). Homeodomain protein TG-interacting factor (TGIF) and E3-ubiquitin ligases TGIF interacting ubiquitin ligase 1 (Tiul1) are implicated in the negative regulation of $TGF-{\beta}$ signaling. In the present study, we investigated the roles of Tiul1 and TGIF in $TGF{\beta}1$-induced IgA CSR. We found that over-expression of Tiul1 decreased $TGF{\beta}1$-induced $GL{\alpha}$ promoter activity and strengthened the inhibitory effect of Smad7 on the promoter activity. Likewise, overexpression of TGIF also diminished $GL{\alpha}$ promoter activity and further strengthened the inhibitory effect of Tiul1, suggesting that Tiul1 and TGIF can down-regulate $TGF{\beta}1$-induced $GL{\alpha}$ expression. In parallel, overexpression of Tiul1 decreased the expression of endogenous IgA CSR-predicitive transcripts ($GLT_{\alpha},\;PST_{\alpha},\;and\;CT_{\alpha}$) and $TGF{\beta}1$-induced IgA secretion, but not $GLT_{\gamma3}$ and IgG3 secretion. Here, over-expressed TGIF further strengthened the inhibitory effect of Tiul1. These results suggest that Tiul1 and TGIF act as negatively regulators in $TGF{\beta}1$-induced IgA isotype expression.

Effects of TGF ${\beta}_1$ on the Growth and Biochemical Changes in Cultured Rat Glial Cells (Transforming growth factor ${\beta}_1$이 배양랫트 신경교세포의 성장 및 생화학적 변화에 미치는 영향)

  • Kim, Yong-Sik;Youn, Yong-Ha;Park, Nan-Hyang;Park, Chan-Woong
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.2
    • /
    • pp.167-179
    • /
    • 1994
  • Recent evidence indicates that glial cells have a wide range of funtions which are critical for maintaining a balanced homeostatic environment in the central nervous system(CNS) peripheral nervous system(PNS). Morever, astrocytes are known to participate in the tissue repair and neuroimmunologic events within the CNS through many kinds of growth factors and cytokines. We investigated the effect of $TGF\;{\beta}_1$, on the growth and biochemical changes of rat glial cells in culture. The proliferative effect was determined by $^3H-thymidine$ uptake and the double immunostain with anti-cell-specific marker and anti-Bromodeoxyuridine(BrdU) antibody. To check the effect of biochemical changes we compared the amounts of glial fibrillar acidic protein(GFAP) and the activity of glutamine synthetase(GS) in astrocyte. And the amounts of myelin basic protein and the activity of 2',3'-cyclic nucleotide phosphohydrolase(CNPase) were measured in oligodendrocyte and the amounts of peripheral myelin in Schwann cell. When $TGF\;{\beta}_1$, was treated for 2 days with cultured glial cell, $TGF\;{\beta}_1$, decreased the $^3H-thymidine$ uptake and proliferation index of double immunostain of astrocytes, which indicates the inhibition of astroglial DNA synthesis, but stimulated the growth of Schwann cell. Also, $TGF\;{\beta}_1$, decrease the GS activity and increased the amounts of GFAP in astrocyte. In the case of Schwann cells the amounts of peripheral myelin was increased when treated with $TGF\;{\beta}_1$. However, $TGF\;{\beta}_1$, didn't show any effect on the proliferation and biochemical changes in oligodendrocyte. These results suggest that $TGF\;{\beta}_1$, might have a critical action in the regulation of proliferation and biochemical changes in glial cells, especially astrocyte.

  • PDF

A STUDY OF $TGF-{\beta}$ EXPRESSION DURING PALATOGENESIS IN RATS WITH CLEFT PALATE INDUCED BY BAPN (($TGF-{\beta}$ 발현이 BAPN으로 유도된 구개열 백서의 구개 형성에 미치는 영향에 대한 실험적 연구)

  • Tae, Ki-Chul;Lee, Dong-Kun;Kim, Jeng-Ghee
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.23 no.3
    • /
    • pp.205-211
    • /
    • 2001
  • Cleft palate is one of the most serious congenital anomalies in human that causes a sucking problem in newborn babies and morphologic deformity that usually leads to death in newborn mouse offspring due to an insufficient ability to suck milk. Therefore cleft palate had been researched with epidemiologic and molecular methods, and many etiologic factors were examined closely. Among of the research methods, biologic molecule researches have been more important method for cleft palate formation study. The $TGF-{\beta}$ had an important role in the cell migration, epithelial-mesenchymal transdifferentiation, extracellular matrix synthesis and deposition. But there was a little research which was study about correlation cleft palate induced by beta-aminonitroproprionitrile(BAPN) with $TGF-{\beta}$ expression. A purpose of this presented study was examed how $TGF-{\beta}$ expression in cleft palate mice. At gestation days 13, BAPN-monofumarate salts($(C_3H_6N_2)_2$ ${\cdot}$ $C_4H_4O_4$, Sigma Co.) was single oral administered to 4 pregnant rats according to 1g/kg body weight. And pregnant rats were sacrificed on day 20 post coitus(p.c.), The $TGF-{\beta}$ expression patterns of cleft formed fetus mice was followed that; 1.Osteoblast, mesenchymal cell and epithelial cell of cleft mice were low expression compare to control mice. 2.There was no $TGF-{\beta}$ difference expression pattern of osteocyte of cleft mice compare to control mice. 3. In western blot analysis, thickness of band of $TGF-{\beta}$ in cleft mice was thin and dilute compare to control mice.

  • PDF