• Title/Summary/Keyword: TGA-FTIR

Search Result 132, Processing Time 0.026 seconds

Characterization and Formation of Chemical Bonds of Silica-Coupling Agent-Rubber (실리카-커플링제-고무의 화학 결합 형성과 특성 분석)

  • Ko, Eunah;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.239-244
    • /
    • 2014
  • Reaction between silica and silane coupling agent without solvent was investigated using transmission mode Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Bis[3-(triethoxysilylpropyl) tetrasulfide] (TESPT) was used as a silane coupling agent. After removing the unreacted TESPT, formation of chemical bonds was analyzed using FTIR and content of reacted TESPT was determined using TGA. Content of the coupling agent bonded to silica increased with increase in the coupling agent content, but the oligomers were formed by condensation reaction between coupling agents when the coupling agent was used to excess. In order to identify bonds formed among silica, coupling agent, and rubber, a silica-coupling agent-BR model composite was prepared by reaction of the modified silica with liquid BR of low molecular weight and chemical bond formation of silica-coupling agent-BR was investigated. Unreacted rubber was removed with solvent and analysis was performed using FTIR and TGA. BR was reacted with the coupling agent of the modified silica to form chemical bonds. Polarity of silica surface was strikingly reduced and particle size of silica was increased by chemical bond formation of silica-coupling agent-BR.

Thermogravimetric and Fourier Transform Infrared Analysis of Switchgrass Pyrolysis (스위치그라스 열분해에 대한 TGA-FTIR 분석)

  • Lee, Seong-Beom;Fasina, Oladiran O.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.1
    • /
    • pp.44-49
    • /
    • 2009
  • This study was conducted to investigate the pyrolysis characteristics of switchgrass using TGA-FTIR instrument. Switchgrass is a high yielding perennial grass that has been designated as a potential energy crop, because of its high energy value. Ground switchgrass were pyrolysed at different heating rates of 10, 20, 30, and $40^{\circ}C/min$ in a TGA-FTIR instrument. The thermal decomposition characteristics of switchgrass were analyzed, and the gases volatilized during the experiment were identified. The thermal decomposition of switchgrass started at approximately $220^{\circ}C$, followed by a major loss of weight, where the main volatilization occurred, and the thermal decomposition was essentially completed by $430^{\circ}C$. The pyrolysis process was found to compose of four stages; moisture evaporation, hemicellulose decomposition, cellulose decomposition, and lignin degradation. The peak temperatures for hemicellulose decomposition ($306^{\circ}C$ to $327^{\circ}C$) and cellulose decomposition ($351^{\circ}C$ to $369^{\circ}C$) were increased with greater heating rates. FTIR analysis showed that the following gases were released during the pyrolysis of switchgrass; $CO_2$, CO, $CH_4$, $NH_3$, COS, $C_{2}H_{4}$, and some acetic acid. The most gas species were released at low temperature from 310 to $380^{\circ}C$, which was corresponding well with the observation of thermal decomposition.

Preparation of Self-repairing Polymer-modified Waterproofing Asphalt-montmorillonite Composite: 2. Validation of Optimized Silylation of Montmorillonite (K-10) Using 3-aminopropyltriethoxysilane (자가치유성을 갖는 고분자개질 방수아스팔트-몬모릴로나이트 composite 제조: 2. 3-aminopropyltriethoxysilane에 의한 몬모릴로나이트(K-10)의 실란화 최적화 검증)

  • Lee, Eun Ju;Lee, Jong Hoon;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.409-418
    • /
    • 2017
  • In preparation of self-repairing polymer-modified waterproofing asphalt-montmorillonite (MMT) composite, silylation-modification characteristics of cation ($Na^+$) exchanged K-10 (Na-MMT-K) using 3-aminopropyltriethoxysilane (APS) were studied and the optimal conditions of its silylation-modification process were proposed by use of the results of instrumental analysis, including FTIR, XRD, NMR and TGA, on silylation-modified Na-MMT-K (S-Na-MMT-K) under various conditions. According to FTIR analysis on S-Na-MMT-K, its peak-strengths of Si-O, -$NH_2$, -$CH_2$- and -OH, correlated with APS silylation-modification reaction, were compared each other. As a result, its optimal conditions including APS-MMT reacting period, APS-stirring period prior to APS-MMT reaction, APS concentration and reaction temperature were turned out to be 2~3 h, 20 min, 7.5 w/v% and $50^{\circ}C$, respectively. In addition, the optimal conditions induced from the results of TGA were also nearly consistent to those according to the results of FTIR analyses. These optimal conditions were turned out to be almost consistent to those drawn according to a criterion from XRD results suggested previously by Lee et al., by which the criterion was validated.

Pyrolysis Behavior of Acrylic Binder/Piezoelectric Ceramic System for Multilayer Actuator (적층 액츄에이터용 아크릴릭계 바인더/압전 세라믹계의 열분해 거동)

  • Park, Soung-Uy;Lee, Jeon-Kook;Jung, Hyung-Jin
    • Analytical Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.231-238
    • /
    • 1993
  • The thermal behavior of binder in multi-layer actuator has an effect on the properties of actuator. Binder burn-out process and thermal degradation mechanism of PNN-PZT/Acrylic binder were analyzed by FTIR, DSC, TGA. Binder was burnt out by two step. In oxygen atomsphere, thermal degradation was activated and final residue was minimized to 5%.

  • PDF

Evaluation of Irradiated Oxidation of XLPE Based on Thermal and IR Reflection Properties

  • Ryu, Boo-Hyung;Lee, Chung;Kim, Ki-Yup
    • International Journal of Safety
    • /
    • v.7 no.1
    • /
    • pp.10-14
    • /
    • 2008
  • For evaluating the radiation degradation of cross-linked polyethylene (XLPE) cable insulation due to the irradiated oxidation, XLPE was irradiated with ${\gamma}$-ray. For each irradiated samples, TGA, DSC, FT-IR, and tensile tests were carried out. Regarding radiation degradation, oxidative process was predominant. TGA, DSC and FT-IR can be useful tools for evaluating the radiation degradation due to the irradiated oxidation because these analyses need only small amount of samples. The results of TGA, DSC and FTIR analyses showed the similar tendency for irradiated degradation. They can be useful tools for evaluating the oxidation of insulating material by non-destructive testing.

Electrical and Chemical Properties of Mica/Epoxy Composite Materials as Affected by Short-Time Aging

  • Kim, Hee-Dong
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.2
    • /
    • pp.59-65
    • /
    • 2003
  • Electrical properties such as permittivity and tan$\delta$ of unaged (control) and aged (72 h at 18$0^{\circ}C$) mica/epoxy composites of 130 ${\mu}{\textrm}{m}$ thickness were measured and their surface conditions were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), electron spectroscopy for chemical analysis (ESCA), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Both permittivity and tan6 of control specimens were higher than those of short-time aged specimens. FTIR results show a new peak at 1710 $cm^{-1}$ / for short-time aged specimens, originating from carbonyl group formed by the oxidation reaction during the aging process. ESCA results show that the binding energy at 532.9 eV representing the singlet state of oxygen ( $O_{1s}$) decreases by 13.7%, whereas that at 534.6 eV increases by 13.7%. Glass transition temperatures of control and short-time aged specimens are observed to be 95.4$^{\circ}C$ and 113.4$^{\circ}C$, which increase with the increase of aging time. TGA results indicate that the control specimens contain a smaller amount of volatile components than the short-time aged specimens.s.

Oxidative Gelation of Dopamine-modified Polyaspartamides by NaIO4 (NaIO4를 사용한 도파민-수식 폴리아스팔트아미드의 산화적 젤화)

  • Jeon, Young Sil;Bui, Quang Tri;An, Jung Hyun;Chung, Dong June;Kim, Ji-Heung
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.108-112
    • /
    • 2014
  • Novel adhesive polyaspartamides containing catechol and primary amine pendent groups were synthesized through successive ring-opening aminolysis reactions of dopamine (DOP) and ethylenediamine (EDA) with polysuccinimide (PSI). The oxidative gelation of aqueous dopamine-modified polyaspartamide was observed by adding $NaIO_4$ as the oxidizing reagent. FTIR, UV-vis and oscillatory rheometry was used to elucidate the oxidative cross-linking toward gel formation. The prepared gel was characterized by the swelling degree, thermogravimetric analysis (TGA), and by scanning electronic microscopy (SEM).

Graphene oxide dispersed polyvinyl chloride/alkyd green nanocomposite film: Processing and physico-mechanical properties

  • Yadav, Mithilesh;Ahmad, Sharif;Chiu, Fang-Chyou
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.246-256
    • /
    • 2018
  • Graphene oxide (GO) reinforced Polyvinyl chloride (PVC)-Waterborne Castor Alkyd (WCA) nanocomposites (PVC/WCA/GO) films were processed through solution blending technique. TGA showed that the thermal stability of PVC/WCA/GO-0.5 films was better than that of PVC/WCA blend film. With incorporation of 0.5 wt.% GO, the tensile strength and elastic modulus of the blend nanocomposite have significantly improved by about 260% and 185%, respectively, compared with neat polymer. The physicomechanical properties of these films suggest that the PVC/WCA/GO nanocomposite films may have a potential scope for their application in packaging industries. The results are supported by characterizations like FTIR, XRD, TEM and FESEM.

Hot stage microscopy and its applications in pharmaceutical characterization

  • Arun Kumar;Pritam Singh;Arun Nanda
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.12.1-12.11
    • /
    • 2020
  • Hot stage microscopy (HSM) is a thermal analysis technique that combines the best properties of thermal analysis and microscopy. HSM is rapidly gaining interest in pharmaceuticals as well as in other fields as a regular characterization technique. In pharmaceuticals HSM is used to support differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA) observations and to detect small changes in the sample that may be missed by DSC and TGA during a thermal experiment. Study of various physical and chemical properties such sample morphology, crystalline nature, polymorphism, desolvation, miscibility, melting, solid state transitions and incompatibility between various pharmaceutical compounds can be carried out using HSM. HSM is also widely used to screen cocrystals, excipients and polymers for solid dispersions. With the advancements in research methodologies, it is now possible to use HSM in conjunction with other characterization techniques such as Fourier transform infrared spectroscopy (FTIR), DSC, Raman spectroscopy, scanning electron microscopy (SEM) which may have additional benefits over traditional characterization techniques for rapid and comprehensive solid state characterization.

Modification of Silica Nanoparticles with Bis[3-(triethoxysilylpropyl)]tetrasulfide and Their Application for SBR Nanocomposite (Bis[3-(triethoxysilylpropyl)]tetrasulfide에 의한 실리카 입자의 표면개질 반응과 SBR 나노 복합체 응용)

  • Ryu, Hyun Soo;Lee, Young Seok;Lee, Jong Cheol;Ha, KiRyong
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.308-315
    • /
    • 2013
  • In this study, we performed surface modification of silica nanoparticles with bis[3-(triethoxysilylpropyl)]tetrasulfide (TESPT) silane coupling agent to study the effects of treatment temperature, treatment time, and amount of TESPT used on the silanization degree with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), elemental analysis (EA) and solid state $^{13}C$ and $^{29}Si$ cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR). We found peak area of isolated silanol groups at $3747cm^{-1}$ decreased, but peak area of $-CH_2$ asymmetric stretching of TESPT at $2938cm^{-1}$ increased with the amount of TESPT from FTIR measurements. We also used universal testing machine (UTM) to study mechanical properties of styrene butadiene rubber (SBR) nanocomposites with 20 phr (parts per hundred of rubber) of pristine and TESPT modified silicas, respectively. The tensile strength and 100% modulus of modified silica/SBR nanocomposite were enhanced from 5.65 to 9.38MPa, from 1.62 to 2.73 MPa, respectively, compared to those of pristine silica/SBR nanocomposite.