• 제목/요약/키워드: TF-IDF analysis

검색결과 197건 처리시간 0.02초

키워드 출현 빈도 분석과 CONCOR 기법을 이용한 ICT 교육 동향 분석 (Analysis of ICT Education Trends using Keyword Occurrence Frequency Analysis and CONCOR Technique)

  • 이영석
    • 산업융합연구
    • /
    • 제21권1호
    • /
    • pp.187-192
    • /
    • 2023
  • 본 연구는 기계학습의 키워드 출현 빈도 분석과 CONCOR(CONvergence of iteration CORrealtion) 기법을 통한 ICT 교육에 대한 흐름을 탐색한다. 2018년부터 현재까지의 등재지 이상의 논문을 'ICT 교육'의 키워드로 구글 스칼라에서 304개 검색하였고, 체계적 문헌 리뷰 절차에 따라 ICT 교육과 관련이 높은 60편의 논문을 선정하면서, 논문의 제목과 요약을 중심으로 키워드를 추출하였다. 단어 빈도 및 지표 데이터는 자연어 처리의 TF-IDF를 통한 빈도 분석, 동시 출현 빈도의 단어를 분석하여 출현 빈도가 높은 49개의 중심어를 추출하였다. 관계의 정도는 단어 간의 연결 구조와 연결 정도 중심성을 분석하여 검증하였고, CONCOR 분석을 통해 유사성을 가진 단어들로 구성된 군집을 도출하였다. 분석 결과 첫째, '교육', '연구', '결과', '활용', '분석'이 주요 키워드로 분석되었다. 둘째, 교육을 키워드로 N-GRAM 네트워크 그래프를 진행한 결과 '교육과정', '활용'이 가장 높은 단어의 관계로 나타났다. 셋째, 교육을 키워드로 군집분석을 한 결과, '교육과정', '프로그래밍', '학생', '향상', '정보'의 5개 군이 형성되었다. 이러한 연구 결과를 바탕으로 ICT 교육 동향의 분석 및 트렌드 파악을 토대로 ICT 교육에 필요한 실질적인 연구를 수행할 수 있을 것이다.

Sentiment Analysis of Product Reviews to Identify Deceptive Rating Information in Social Media: A SentiDeceptive Approach

  • Marwat, M. Irfan;Khan, Javed Ali;Alshehri, Dr. Mohammad Dahman;Ali, Muhammad Asghar;Hizbullah;Ali, Haider;Assam, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권3호
    • /
    • pp.830-860
    • /
    • 2022
  • [Introduction] Nowadays, many companies are shifting their businesses online due to the growing trend among customers to buy and shop online, as people prefer online purchasing products. [Problem] Users share a vast amount of information about products, making it difficult and challenging for the end-users to make certain decisions. [Motivation] Therefore, we need a mechanism to automatically analyze end-user opinions, thoughts, or feelings in the social media platform about the products that might be useful for the customers to make or change their decisions about buying or purchasing specific products. [Proposed Solution] For this purpose, we proposed an automated SentiDecpective approach, which classifies end-user reviews into negative, positive, and neutral sentiments and identifies deceptive crowd-users rating information in the social media platform to help the user in decision-making. [Methodology] For this purpose, we first collected 11781 end-users comments from the Amazon store and Flipkart web application covering distant products, such as watches, mobile, shoes, clothes, and perfumes. Next, we develop a coding guideline used as a base for the comments annotation process. We then applied the content analysis approach and existing VADER library to annotate the end-user comments in the data set with the identified codes, which results in a labelled data set used as an input to the machine learning classifiers. Finally, we applied the sentiment analysis approach to identify the end-users opinions and overcome the deceptive rating information in the social media platforms by first preprocessing the input data to remove the irrelevant (stop words, special characters, etc.) data from the dataset, employing two standard resampling approaches to balance the data set, i-e, oversampling, and under-sampling, extract different features (TF-IDF and BOW) from the textual data in the data set and then train & test the machine learning algorithms by applying a standard cross-validation approach (KFold and Shuffle Split). [Results/Outcomes] Furthermore, to support our research study, we developed an automated tool that automatically analyzes each customer feedback and displays the collective sentiments of customers about a specific product with the help of a graph, which helps customers to make certain decisions. In a nutshell, our proposed sentiments approach produces good results when identifying the customer sentiments from the online user feedbacks, i-e, obtained an average 94.01% precision, 93.69% recall, and 93.81% F-measure value for classifying positive sentiments.

텍스트 마이닝을 활용한 자율운항선박 분야 주요 이슈 분석 : 국내 뉴스 데이터를 중심으로 (Analysis of major issues in the field of Maritime Autonomous Surface Ships using text mining: focusing on S.Korea news data)

  • 이혜영;김진식;구병수;남문주;장국진;한성원;이주연;정명석
    • 시스템엔지니어링학술지
    • /
    • 제20권spc1호
    • /
    • pp.12-29
    • /
    • 2024
  • The purpose of this study is to identify the social issues discussed in Korea regarding Maritime Autonomous Surface Ships (MASS), the most advanced ICT field in the shipbuilding industry, and to suggest policy implications. In recent years, it has become important to reflect social issues of public interest in the policymaking process. For this reason, an increasing number of studies use media data and social media to identify public opinion. In this study, we collected 2,843 domestic media articles related to MASS from 2017 to 2022, when MASS was officially discussed at the International Maritime Organization, and analyzed them using text mining techniques. Through term frequency-inverse document frequency (TF-IDF) analysis, major keywords such as 'shipbuilding,' 'shipping,' 'US,' and 'HD Hyundai' were derived. For LDA topic modeling, we selected eight topics with the highest coherence score (-2.2) and analyzed the main news for each topic. According to the combined analysis of five years, the topics '1. Technology integration of the shipbuilding industry' and '3. Shipping industry in the post-COVID-19 era' received the most media attention, each accounting for 16%. Conversely, the topic '5. MASS pilotage areas' received the least media attention, accounting for 8 percent. Based on the results of the study, the implications for policy, society, and international security are as follows. First, from a policy perspective, the government should consider the current situation of each industry sector and introduce MASS in stages and carefully, as they will affect the shipbuilding, port, and shipping industries, and a radical introduction may cause various adverse effects. Second, from a social perspective, while the positive aspects of MASS are often reported, there are also negative issues such as cybersecurity issues and the loss of seafarer jobs, which require institutional development and strategic commercialization timing. Third, from a security perspective, MASS are expected to change the paradigm of future maritime warfare, and South Korea is promoting the construction of a maritime unmanned system-based power, but it emphasizes the need for a clear plan and military leadership to secure and develop the technology. This study has academic and policy implications by shedding light on the multidimensional political and social issues of MASS through news data analysis, and suggesting implications from national, regional, strategic, and security perspectives beyond legal and institutional discussions.

ESG 보고서의 텍스트 분석을 이용한 ESG 활동 탐색 -중국 상장 제조 기업을 대상으로- (Exploring ESG Activities Using Text Analysis of ESG Reports -A Case of Chinese Listed Manufacturing Companies-)

  • 진웅철;백승익;손유봉;김향단
    • 서비스연구
    • /
    • 제14권2호
    • /
    • pp.18-36
    • /
    • 2024
  • 본 연구는 글로벌 경제 시장에서 중국의 제조 기업들이 동적역량을 기반으로 어떠한 ESG 활동을 수행하고 있으며 그 활동에는 어떠한 차이가 있는가를 분석하였다. 상하이와 선전 증권 거래소 (Shanghai & Shenzhen Stock Exchange)에서 151개 중국 상장 제조 기업들의 ESG 연례 보고서와 상하이 화정 지표 정보 회사(CSI, China Securities Index Company)의 ESG 지표를 데이터로 사용하였다. 연구 분석에는 TensorFlow-BERT 모델과 코사인 유사도를 사용하여 환경, 사회, 지배구조로 구분된 ESG 키워드를 분류하였고 이를 기반으로 다음 세가지의 연구 질문을 구성하였다. 첫번째는 ESG 점수가 높은 기업(TOP-25)과 낮은 기업(BOT-25)을 구분하여 이 기업들 사이의 ESG 활동에는 어떠한 차이가 있는지를 확인하였으며, 두 번째는 ESG 점수가 높은 기업만을 중심으로 10년간(2010~2019년)의 ESG 활동에는 어떠한 변화가 있는지도 확인하였다. 그 결과 ESG 점수가 높은 기업과 낮은 기업간의 ESG 활동에는 유의한 차이를 보였으며, TOP-25기업의 연도별 활동 변화 추적에서는 ESG 활동의 모든 부분에서 차이를 보이지 않은 것으로 나타났다. 세번째 연구에서는 연도별로 작성된 각 항목별 E, S, G 키워드에 대하여 소셜 네트워크 분석을 진행하였다. 동시발생행렬(Co-occurance matrix) 기법을 통해 기업들의 ESG활동을 4사분면 그래프로 시각화하였으며 이를 바탕으로 ESG활동에 대한 향후 방향을 제시하였다.

텍스트 마이닝을 이용한 특허정보검색 개발에 관한 연구 (A Study on Development of Patent Information Retrieval Using Textmining)

  • 고광수;정원교;신영근;박상성;장동식
    • 한국산학기술학회논문지
    • /
    • 제12권8호
    • /
    • pp.3677-3688
    • /
    • 2011
  • 특허정보검색의 목적은 다양한 목적성을 지니고 있다. 일반적으로 특허정보검색은 제한된 키워드들에 의한 검색으로 이루어지며, 선행 특허권과 유사특허를 파악하기 위하여 반복적인 검색과 검토의 노력이 필요하다. 본 논문에서는 특허문서의 전체 텍스트를 분석하여 특징치를 찾아내는 내용기반 검색방법을 제안하고 검색결과를 질의문서와 유사한 문서 순으로 우선 배치하여 검색에 효율을 높일 수 있는 방법을 제안한다. 즉, 제안된 알고리즘은 텍스트 분석과정을 통해 각 문서별로 특징치가 부여되고 문서 간 특징치 비교를 통해 유사문서를 찾고 문서를 랭킹하여 유사정보를 제공한다. 텍스트 분석과정은 Stop-word과정, 핵심단어 추출과정, 핵심단어 가중치 산출 과정으로 이루어진다. 실험결과에서는 정확도 측정을 실시하여 일반검색엔진과 본 논문에서 제안한 알고리즘의 검색 정확도를 비교하였다. 본 논문은 검색결과를 질의한 문서와 유사한 문서 순으로 랭킹하기 때문에 검색이용자가 검색결과 검토과정에서 유사한 문서를 먼저 검토할 수 있도록 하여 검토시간을 줄이고 검색의 효율을 높일 수 있다. 또한 특허문서 전체 텍스트를 입력받아 사용하기 때문에 특허검색에 익숙하지 않는 이용자도 검색을 쉽고 빠르게 이용할 수 있다. 그리고 내용 기반 검색이 이루어지기 때문에 키워드 및 검색 식을 이용하는 방법보다 검색범위를 넓힐 수 있어서 검색에 누락되는 데이터를 줄일 수 있는 효과를 가진다.

개인화된 뉴스 서비스를 위한 소셜 네트워크 기반의 콘텐츠 추천기법 (Content-based Recommendation Based on Social Network for Personalized News Services)

  • 홍명덕;오경진;가명현;조근식
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.57-71
    • /
    • 2013
  • 세계에는 수많은 사람들이 살아가고 있고, 사람들의 일상으로부터 매일, 매 시간 단위로 새로운 뉴스가 발생한다. 발생되는 뉴스는 예정된 일과 예상하지 못한 일들을 포함하고 있다. 발생하는 뉴스의 거대한 양과 이를 전달하는 수많은 미디어들로 인해 사람들은 뉴스 콘텐츠를 이용하는데 많은 시간을 소비하게 된다. 하지만 미디어에 시시각각 나타나는 속보와 실시간 이슈의 대부분이 가십 기사로 이루어져 있어 사용자들이 자신의 성향에 맞는 뉴스를 선별하고, 뉴스로부터 정보를 획득하는 것은 쉽지 않은 일이다. 또한 사용자의 관심사가 시간에 따라 변하기 때문에 뉴스 제공에 있어 사용자의 변하는 관심사를 반영하는 것이 요구된다. 본 논문에서는 사용자의 최근 관심사를 기반으로 사용자 선호도에 맞는 뉴스를 제공하기 위한 콘텐츠 기반의 추천 기법 및 시스템을 제안한다. 사용자의 최근 선호도를 파악하기 위하여 소셜 네트워크 서비스인 Facebook 사용자의 정보와 최근 게시글을 이용하여 동적으로 사용자 프로파일을 생성하여 이를 뉴스 서비스에 활용하고, 사용자 선호도에 적합한 뉴스를 추출하기 위해서 뉴스 콘텐츠의 분석을 요구한다. 뉴스 콘텐츠 분석을 위해 미디어에서 제공되는 뉴스의 카테고리를 사용하고, 뉴스 방송원고의 분석 및 주요 키워드 추출을 통해 뉴스 프로파일을 생성한다. 사용자 프로파일과 뉴스 프로파일 간의 유사도 측정을 위해서는 두 프로파일 간 형식의 일치화가 요구되므로 사용자 프로파일을 뉴스 프로파일과 동일한 형태로 생성한다. 사용자가 시스템에 접속하면 시스템은 사용자 프로파일에 명시된 선호도를 기반으로 뉴스 프로파일과의 유사도를 측정하고, 사용자 선호도에 가장 적합한 뉴스들을 제공하게 된다. 또한 사용자에게 제공된 뉴스 프로파일과 다른 뉴스 프로파일들 간에 유사도를 측정하여 유사도가 높은 관련된 뉴스들을 제공하게 된다. 제안한 개인화된 뉴스 서비스의 성능을 평가하기 위해 사용자에게 추천된 뉴스에 대한 사용자 평가와 시스템 예측값의 오차를 기반으로 6Sub-Vectors 벤치마크 알고리즘과 성능 평가를 수행하였고, 실험 결과를 통해 제안한 시스템의 우수성을 입증하였다.

사용자 행동 기반의 사회적 관계를 결합한 사용자 협업적 여과 방법 (Incorporating Social Relationship discovered from User's Behavior into Collaborative Filtering)

  • 타이쎄타;하인애;조근식
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.1-20
    • /
    • 2013
  • 소셜 네트워크는 사용자들의 공통된 관심사, 경험, 그리고 일상 생활들을 함께 공유하기 위해 소셜 네트워크 상 사람들을 서로 연결시켜주는 거대한 커뮤니케이션 플랫폼이다. 소셜 네트워크상의 사용자들은 포스팅, 댓글, 인스턴스 메시지, 게임, 소셜 이벤트 외에도 다양한 애플리케이션을 통해 다른 사용자들과 소통하고 개인 정보 관리하는데 많은 시간을 소비한다. 소셜 네트워크 상의 풍부한 사용자 정보는 추천시스템이 추천 성능을 향상시키기 위해 필요한 큰 잠재력이 되었다. 대부분의 사용자들은 어떤 상품을 구매하기 전 가까운 관계이거나 같은 성향을 가진 사람들의 의견을 반영하여 의사 결정을 하게 된다. 그러므로 소셜 네트워크에서의 사용자 관계는 추천시스템을 위한 사용자 선호도 예측을 효율적으로 높이는데 중요한 요소라 할 수 있다. 일부 연구자들은 소셜 네트워크에서의 사용자와 다른 사용자들 사이의 상호작용 즉, 소셜 관계(social relationship)와 같은 소셜 데이터가 추천시스템에서 추천의 질에 어떠한 영향을 미치는가를 연구하고 있다. 추천시스템은 아마존, 이베이, Last.fm과 같은 큰 규모의 전자상거래 사이트 또한 채택하여 사용되는 시스템으로, 추천시스템을 위한 방법으로는 협업적 여과 방법과 내용 기반 여과 방법이 있다. 협업적 여과 방법은 사용자들의 선호도 학습에 의해 사용자가 아직 평가하지 않은 아이템 중 선호할 수 있는 아이템을 정확하게 제안하기 위한 추천시스템 방법 중 하나이다. 협업적 여과는 사용자들의 데이터에 초점을 맞춘 방법으로 유사한 배경과 선호도를 가지는 사용자들로부터 정보를 수집하여 사용자들의 선호도 예측을 자동으로 발생시킨다. 특히 협업적 여과는 근접한 이웃 사용자들에 의해서 목적 사용자가 선호할 수 있는 아이템을 제시하는 것으로 유사한 이웃 사용자를 찾는 것이 중요하다. 좋은 이웃 사용자 발견은 사용자와 아이템을 고려하는 방법이 일반적이다. 각 사용자는 아이템 즉, 영화, 상품, 책 등에 자신의 선호도를 나타내기 위하여 평가 값을 입력하고, 시스템은 이를 바탕으로 사용자-평가 행렬을 구축한다. 이 사용자-평가 행렬은 목적 사용자와 유사하게 아이템을 평가한 사용자 그룹을 찾기 위한 것으로, 목적 사용자가 아직 평가하지 않은 아이템에 대하여 사용자-평가 매트릭스를 통해 그 평가 값을 예측한다. 현재 이 협업적 여과 방법은 전자상거래와 정보 검색에서 적용되어 개인화 시스템에 효율적으로 사용되고 있다. 하지만 초기 사용자 문제, 데이터 희박성 문제와 확장성 그리고 예측 정확도 향상 등 해결해야 할 과제가 여전히 남아 있다. 이러한 문제들을 해소하기 위해 많은 연구자들은 하이브리드, 신뢰기반, 소셜 네트워크 기반 협업적 여과와 같은 다양한 방법을 제안하였다. 본 논문에서는 전통적인 협업적 여과 방식의 예측 정확도와 추천 성능을 향상시키기 위해 소셜 네트워크에 존재하는 소셜 관계를 이용한 협업적 여과 시스템을 제안한다. 소셜 관계는 소셜 네트워크 서비스 중 하나인 페이스북 사용자들이 남긴 포스팅과 사용자의 소셜 네트워크 친구와 의견 교류 중 남긴 코멘트와 같은 사용자 행동을 기반으로 정의된다. 소셜 관계를 구축하기 위해 소셜 네트워크 사용자의 포스팅과 댓글을 추출하고, 추출된 텍스트에 불용어 및 특수 기호 제거와 스테밍 등 전처리를 수행하였다. 특징 벡터는 TF-IDF를 이용하여 전처리된 텍스트에 나타난 각 단어에 대한 특징 점수를 계산함으로써 구축된다. 본 논문에서 이웃 사용자를 결정하기 위해 사용되는 사용자 간 유사도는 특징 벡터를 이용한 사용자 행동 유사도와 사용자의 영화 평가를 기반으로 한 전통적 방법의 유사도를 결합하여 계산된다. 제안하는 시스템은 목표 사용자와 제안한 방법을 통해 결정된 이웃 사용자 집단을 기반으로 목표 사용자가 평가하지 않은 아이템에 대한 선호도를 예측하고 Top-N 아이템을 선별하여 사용자에게 아이템을 추천하게 된다. 본 논문에서 제안하는 방법을 확인하고 평가하기 위하여 IMDB에서 제공하는 영화 정보 기반으로 영화 평가 시스템을 구축하였다. 예측 정확도를 평가하기 위해 MAE 값을 이용하여 제안하는 알고리즘이 얼마나 정확한 추천을 수행하는지에 대한 예측 정확도를 측정하였다. 그리고 정확도, 재현율 및 F1값 등을 활용하여 시스템의 성능을 평가하였으며, 시스템의 추천 품질은 커버리지를 이용하여 평가되었다. 실험 결과로부터 본 논문에서 제안한 시스템이 보다 더 정확하고 좋은 성능으로 사용자에게 아이템을 추천하는 것을 볼 수 있었다. 특히 소셜 네트워크에서 사용자 행동을 기반으로 한 소셜 관계를 이용함으로써 추천 정확도를 6% 향상시킴을 보였다. 또한 벤치마크 알고리즘과의 성능비교 실험을 통해 7% 향상된 추천 성능의 결과를 보여준다. 그러므로 사용자의 행동으로부터 관찰된 소셜 관계를 CF방법과 결합한 제안한 방법이 정확한 추천시스템을 위해 유용하며, 추천시스템의 성능과 품질을 향상시킬 수 있음을 알 수 있다.