• Title/Summary/Keyword: TESPD

Search Result 9, Processing Time 0.021 seconds

Bifunctional Silane (TESPD) Effects on Silica Containing Elastomer Compound Part I: Natural Rubber (NR) (양기능성실란(TESPD)이 실리카함유 복합소재에 미치는 영향)

  • Kim, Kwang-Jea
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.134-142
    • /
    • 2009
  • Organo bifunctional silane (TESPD) is added into silica containing NR and its effects are investigated with respect to the vulcanization properties, the processability, and the physical properties. The addition of the TESPD into silica filled NR compound increases the degree of crosslinking by formation of a strong 3-dimensional network structure with silica surface via coupling reaction, which results in an improved mechanical property. It also improves the processabilities compared to the Control compound.

Bifunctional Silane (TESPD) Effects on Silica Containing Elastomer Compound Part II: Styrene-co-Butadiene Rubber (SBR) (양기능성실란(TESPD)이 실리카 함유 복합 소재에 미치는 영향 Part II: Styrene-co-Butadiene Rubber (SBR))

  • Jeon, Duk-Kyu;Kim, Kwang-Jea
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.252-259
    • /
    • 2009
  • Bifunctional silane (TESPD) is added into silica filled SBR compound and its effects with respect to the vulcanization properties, the processability, and the physical properties are investigated. The addition of the TESPD into silica filled SBR compound increases the degree of crosslinking by formation of a strong 3-dimensional network structure with silica surface via coupling reaction, which results in an improved mechanical property. It also improves the processabilities compared to the Control compound.

Amino Silane, Vinyl Silane, TESPD, ZS(TESPD/Zinc Complex) Effects on Carbon Black/Clay Filled Chlorobutyl Rubber(CIIR) Compounds Part I: Effects on Hard Clay/Carbon Black Filled Compounds

  • Kim, Kwang-Jea
    • Carbon letters
    • /
    • v.10 no.2
    • /
    • pp.101-108
    • /
    • 2009
  • Various silanes, amino silane, vinyl silane, TESPD, and ZS (TESPD/zinc soap complex), are added into chlorinated isobutylene-isoprene copolymer (CIIR)/hard clay/carbon black (CB) compound and they are investigated with respect to the vulcanization characteristics, the processability, and the mechanical properties. In hard clay/CB filled system, only ZS silane added compound shows both lower Mooney viscosity and extrusion torque while vinyl silane added compound showed only a lower extrusion torque. All the ZS added compounds showed the lowest viscosity among them. The silane added compounds showed an increased modulus. In 'fatigue to failure' count test, the ZS added compound showed superior counts compared to other silane (amino, vinyl, TESPD) added compounds. The mechanical properties were significantly increased when the S2 and ZS were added into CIIR/hard clay/CB compound. The ZS added compounds showed a significant improvement on elongation modulus.

Amino Silane, Vinyl Silane, TESPD, ZS(TESPD/Zinc Complex) Effects on Carbon Black/Clay Filled Chlorobutyl Rubber(CIIR) Compounds Part II: Effects on Soft Clay/Carbon Black Filled Compounds

  • Kim, Kwang-Jea
    • Carbon letters
    • /
    • v.10 no.2
    • /
    • pp.109-113
    • /
    • 2009
  • Various silanes, amino silane, vinyl silane, TESPD, and ZS (TESPD/zinc soap complex), are added into chlorinated isobutylene-isoprene copolymer (CIIR)/soft clay/carbon black (CB). The vulcanization characteristics, the processability, and the mechanical properties are measured. In soft clay/CB filled CIIR system, there are no significant changes in Mooney viscosity among compounds. Vinyl silane added compound shows a low extrusion torque. All the silane added compounds shows an increased modulus. The mechanical properties are significantly increased when the S2 is added into CIIR/soft clay/CB compounds.

Amino Silane, Vinyl Silane, TESPD, ZS (TESPD/Zinc Complex) Effects on Carbon Black/Clay Filled Chlorobutyl Rubber (CIIR) Compounds Part III: Comparative Studies on Hard Clay and Soft Clay Filled Compounds

  • Kim, Kwang-Jea
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.190-197
    • /
    • 2009
  • Various silanes, amino silane, vinyl silane, sulfur silane (TESPD), and ZS (TESPD/zinc soap complex), are added into chlorinated isobutylene-isoprene copolymer (CIIR)/soft clay/carbon black (CB) and CIIR/hard clay/CB compounds and they are investigated with respect to the vulcanization characteristics, the processability, and the mechanical properties. Comparing hard clay and soft clay filled compounds, hard clay (Suprex) filled system shows a higher die C tear than the soft clay (GK) filled one. The other properties (Mooney, extrusion torque/pressure, torque rise ($M_H-M_L$), modulus at 300%) are close to each other. Among various silanes, the ZS treated hard clay (Suprex) compound shows the highest mechanical property following hard clay(S)/vinyl silane(V) and soft clay(GK)/vinyl silane(V) compounds. The TESPD and the ZS effectively helps a formation of a strong 3-dimensional network structure between silica and CIIR via coupling reaction due to bifunctional nature of TESPD. In addition to that, the ZS added compounds show both a better processability and mechanical properties compared to the S2 ones at low concentration due to improved compatibility between zinc soap and CIIR matrix. Only the ZS added compound shows both improved processabilities (Mooney, Extrusion torque-& pressure) and improved mechanical properties (degree of crosslinking, elongation modulus, tear, and fatigue to failure counts) on both CIIR/hard clay/CB and CIIR/soft clay/CB compounds.

Zinc Surfactant Effects on Nr/Tespd/Silica and SBR/Tespd/Silica Compounds

  • Kim, Kwang-Jea;Vanderkooi, John
    • Elastomers and Composites
    • /
    • v.39 no.4
    • /
    • pp.263-273
    • /
    • 2004
  • The effects of zinc surfactant (ZB) on the bis(triethoxysilylpropyl)disulfide (TESPD)-silica mixture in natural rubber (NR) and solution butadiene-co-styrene rubber(S-SBR) were compared with respect to their rheological property, processability, physical properties, and silica dispersion. In the NR compound, addition of the ZB increased the reversion resistance time (T-2), the tensile modulus, and the BO time; however, lowered the viscosity, the HBU, and tans values. In the S-SBR copound, addition of the ZB increased the $tan{\delta}$ values while lowered the T-2, the tensile modulus the BO time, the viscosity, and the HBU of the compound. In the NR compounds, addition of the ZB significantly increased the processability and mechanical property. However, in the S-SBR compounds, it improved the processability the mechanical property was not improved.

Overview of Hydrolysis : A Review Part II- Hydrolysis Application

  • Kim, Kwang-Jea
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.137-146
    • /
    • 2020
  • Part 1 provides a theoretical introduction of the hydrolysis mechanism, while Part 2 introduces other types of reaction mechanisms after hydrolysis in elastomer and PA66 composites. We reviewed the condensation reaction, which occurs after hydrolysis in bi-functional alkoxy silane (TESPD & TESPT), and investigated its effects on the mechanical properties of the composites. We also reviewed activators such as zinc soap, which enhances the mechanical properties of silica-silane-filled elastomer composites. The interaction parameter of silica-silane-filled elastomer composites [αC (alpha C)] were also discussed. The effects of hydrolysis on the mechanical property changes in plastic composites were compared and reviewed.

Effects of Silane Structure on Composite Interaction Parameter (αC)) of Silica Filled Rubber Compounds (실란 구조가 실리카 복합소재 내 구조발달 상호계수(αC)에 미치는 영향)

  • Kim, Sung Min;Kim, Kwang Jea
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.411-416
    • /
    • 2014
  • Due to the polar characteristics of silica compared to carbon black, the degree of silica dispersion, which affects the mechanical properties of rubber compounds, is an important issue. Wolff first introduced the in-rubber structure of particles (${\alpha}_F$) to express the structure development in the compounds; however, with the introduction of bifunctional silanes, his theory could not explain the 3-dimensional network structure of the compounds. Later his theory was expanded to express the composite interaction parameter (in-rubber structure of the compound) (${\alpha}_C$), which included Wolff's filler-filler interaction parameter (${\alpha}_F$), however, there was no reported experimental result proving the theory. This research first experimentally expressed the in-rubber structure of the compound ${\alpha}_C$ (= ${\alpha}_F+{\alpha}_{FP}$(filler-silane-rubber interaction parameter) + ${\alpha}_P$ (rubber-rubber interaction parameter)) upon mono- and bifunctional silane treated silica filled natural rubber (NR) compounds. Using different structure silanes, i.e. PTES, OTES, TESPD, and TESPT, the ${\alpha}_C$ value of each compound was measured and calculated. The ${\alpha}_C$ value of TESPT treated silica filled compound was 1.64, which composed of ${\alpha}_F$ (0.99), ${\alpha}_{FP}$ (0.31), and ${\alpha}_P$ (0.34).

실란 개질제가 실리카충전고무 컴파운드에 미치는 영향

  • Kim, Gwang-Je
    • Rubber Technology
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • Effects of silane modifier, bis(triethoxysilylpropyl) tetrasulfide (TESPT(S4)) and bis(triethoxysilylpropyl) disulfide (TESPD(S2)), on silica filled compound were investigated upon processability, dynamic, mechanical, heat build-up, blowout properties, and silica dispersion in natural rubber (NR). The temperature of the S2 treated silica compound generated higher than that of the S4 treated compound during internal mixer compounding. The shear viscosity of the S2 compound exhibited lower than that of the S4 compound and the viscosity measured in dynamic mode was close to each other. The elongation modulus of the S2 compound exhibited lower than that of the S4; however, the tear resistance strength of the S2 compound exhibited higher than that of the S4 compound. The loss tan$\delta$ values of the S2 compound exhibited higher than those of the S4 at room temperature. The augmentation of the test temperature lowered the tan$\delta$ values of each compound, which results in close tan$\delta$ values to each other at $100^{\circ}C$. The S2 compound deformed less than the S4 compound, and the blowout time of each compound was close to each other. The S2 compound generated more heat build-up than the S4 compound. The abrasion loss of the S2 compound was less than that of the S4 compound. The size of the silica agglomerate reduced on both S4 and S2 compounds upon vulcanization. The addition of the bifunctional silanes (S2 and S4) on silica filled NR compound improved the processability of each compound and their effects were more significant on the S2 compound than the S4 compound. After vulcanization the silica agglomerate size of each compound reduced compared with before vulcanization.

  • PDF