• 제목/요약/키워드: TENSILE PROPERTY

검색결과 1,279건 처리시간 0.027초

Constitutive property behavior of an ultra-high-performance concrete with and without steel fibers

  • Williams, E.M.;Graham, S.S.;Akers, S.A.;Reed, P.A.;Rushing, T.S.
    • Computers and Concrete
    • /
    • 제7권2호
    • /
    • pp.191-202
    • /
    • 2010
  • A laboratory investigation was conducted to characterize the constitutive property behavior of Cor-Tuf, an ultra-high-performance composite concrete. Mechanical property tests (hydrostatic compression, unconfined compression (UC), triaxial compression (TXC), unconfined direct pull (DP), uniaxial strain, and uniaxial-strain-load/constant-volumetric-strain tests) were performed on specimens prepared from concrete mixtures with and without steel fibers. From the UC and TXC test results, compression failure surfaces were developed for both sets of specimens. Both failure surfaces exhibited a continuous increase in maximum principal stress difference with increasing confining stress. The DP tests results determined the unconfined tensile strengths of the two mixtures. The tensile strength of each mixture was less than the generally assumed tensile strength for conventional strength concrete, which is 10 percent of the unconfined compressive strength. Both concretes behaved similarly, but Cor-Tuf with steel fibers exhibited slightly greater strength with increased confining pressure, and Cor-Tuf without steel fibers displayed slightly greater compressibility.

Physical Property Evaluation of Chitosan Mordanted Green Tea Dyed Cellulose - Focusing on the physical property changes upon the repetition of treatment -

  • Jung, Hye-Kyung;Kim, Sin-Hee
    • 패션비즈니스
    • /
    • 제12권6호
    • /
    • pp.61-72
    • /
    • 2008
  • The UV-protection effect of green-tea dyed fabrics was reported in our previous studies. The chitosan was used as a natural mordant of cellulose fiber for green tea extract because chitosan is a natural bio-polymer. The increase in the UV protection property of summer cellulose fabrics, cotton and linen, upon the repetition of chitosan mordanting and green tea dyeing was observed. However, the physical property change would be followed by this repeated wet processing of the cellulose fabric. Therefore, the physical changes of the chitosan mordanted and green tea dyed cotton and linen fabrics were evaluated by KES-FB system. Tensile, shear, bending, compression, and surface characteristics were tested upon the repetition of mordanting and dyeing treatments. Linearity of tensile force increased in the treated cotton and linen samples. Tensile energy and resilience decreased in all treated fabrics. Shear stiffness increased in the treated cotton and linen in general. Shear hysteresis was increased in all cotton samples and some linen samples. In cotton, the bending rigidity in all treated cottons increased except C3G3. As the chitosan mordanting numbers increased, the bending rigidity tended to decrease. In linen, the bending rigidity and hysteresis increased in all treated samples. Compressional energy and resilience increased as the number of chitosan mordanting increased both in cotton and linen. This could be the result of the increase in thickness upon chitosan mordanting. Surface coefficient of friction increased in the treated cotton and linen in general. Surface roughness tended to increase in cotton.

0.19C - 1.17Cr 강의 냉간인발조직과 기계적 성질 (The Microstructure and Mechanical Property of 0.19C-1.17Cr Steel with Cold Drawing)

  • 신정호;장병록
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 제4회 압출 및 인발가공 심포지엄
    • /
    • pp.85-90
    • /
    • 2001
  • The microstructure and mechanical property of 0.19C-1.17Cr steel were investigated with cold drawing. This commercial steel has the microstructure that is consist of ferrite and pearlite. The tensile and yield strength are increased as the reduction ratio of cold drawing is increased. It was clear that mechanical properties could be improved by combination of the heat treatments and reduction ratio. Yield strength. tensile strength, and impact value were formulated as a constitutive function of cold drawing ratio, respectively.

  • PDF

Mechanical Property, Thermal Conductivity, Rebound Resilience and Thermal Property of Chloro Isobutylene Isoprene Rubber/Ethylene Propylene Diene Monomer Blend

  • Hwang, Young-Bea;Lee, Won-Ki;Park, Chan Young
    • Elastomers and Composites
    • /
    • 제53권2호
    • /
    • pp.80-85
    • /
    • 2018
  • Chloro isobutylene isoprene rubber (CIIR) and ethylene propylene diene monomer (EPDM) compounded with other formulation chemicals, depending on the polymer blend, were prepared by mechanical mixing. After manufacturing the rubber vulcanizate by compression molding with a hot press, the mechanical and thermal properties including thermal conductivity, rebound resilience of the CIIR/EPDM blends were measured. As the EPDM rubber content increased, hardness and tension set showed a tendency to increase. Pure CIIR exhibited the lowest tensile strength; however, tensile strength increased with loading of EPDM rubber. On the other hand, in CIIR rubber, which is usually a low-rebound elastomer owing to a high damping effect, rebound resilience exhibited an increasing trend as the content of EPDM rubber increased. As the EPDM rubber content increased, thermal stability was improved due to reduction of decomposition rate in the rubber region of the blend vulcanizate.

Zinc Surfactant Effects on Nr/Tespd/Silica and SBR/Tespd/Silica Compounds

  • Kim, Kwang-Jea;Vanderkooi, John
    • Elastomers and Composites
    • /
    • 제39권4호
    • /
    • pp.263-273
    • /
    • 2004
  • The effects of zinc surfactant (ZB) on the bis(triethoxysilylpropyl)disulfide (TESPD)-silica mixture in natural rubber (NR) and solution butadiene-co-styrene rubber(S-SBR) were compared with respect to their rheological property, processability, physical properties, and silica dispersion. In the NR compound, addition of the ZB increased the reversion resistance time (T-2), the tensile modulus, and the BO time; however, lowered the viscosity, the HBU, and tans values. In the S-SBR copound, addition of the ZB increased the $tan{\delta}$ values while lowered the T-2, the tensile modulus the BO time, the viscosity, and the HBU of the compound. In the NR compounds, addition of the ZB significantly increased the processability and mechanical property. However, in the S-SBR compounds, it improved the processability the mechanical property was not improved.

인코넬 82/182 이종금속 용접부의 기계물성 평가 (Evaluation of Mechanical Properties in Inconel 82/182 Dissimilar Metal Welds)

  • 이정훈;장창희;김종성;진태은
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.244-249
    • /
    • 2007
  • In several locations of the pressurized water reactors, dissimilar metal welds using inconel welding wires are used to join the low alloy steel nozzles to stainless steel pipes. To evaluate the integrity and design the dissimilar welds, tensile and fracture properties variations are needed. In this study, dissimilar metal welds composed of SA508 Gr.3 LAS, inconel 82/182 weld, and TP316 stainless steel were prepared by gas tungsten arc welding and shielded metal arc welding technique. Microstructures were observed using optical and electron microscopes. Different tensile and fracture properties were observed depending on the specimen sampling position at room temperature and $320^{\circ}C,$ and that was discussed based on the microstructure characteristics. It was found that the strength at the bottom of weld was greater than at the top of the weld. Also, from the test data using small punch specimen, more detailed tensile property variations were evaluated.

  • PDF

내열용 오버레이 12%Cr계 스테인레스강의 열피로 특성에 미치는 Cr 함량과 델타-페라이트의 영향 (Effects of Cr Content and Volume Fraction of δ-Ferrite on Thermal Cycling Fatigue Properties of Overlay Welded Heat-Resistant 12%Cr Stainless Steels)

  • 정재영
    • 소성∙가공
    • /
    • 제26권6호
    • /
    • pp.356-364
    • /
    • 2017
  • In this study, submerged arc cladded Fe-Cr-Ni-Mo-CuWNbV-C stainless steels containing various Cr contents between 11.2 wt.% and 16.7 wt.% were prepared with fixed C content at about 0.14 wt.%. Using these alloys, changes in microstructure, tensile property, and thermal fatigue property were investigated. Phase fraction of delta-ferrite was increased gradually with increasing Cr content. However, tensile strength, hardness, and thermal fatigue resistance appeared to be decreased. When the microstructure of delta-ferrite was observed, it was revealed that the mesh structure retained up to about 15% Cr content. Although thermal fatigue resistance was almost the same for Cr contents between 11.0 and 14.5 wt.%, it was significantly decreased at higher Cr contents. This was evident from mean value of crack lengths of 10 largest ones. Evaluation of thermal fatigue resistance on alloys with various Cr contents revealed the following important results. First, the reproducibility of ranking test was excellent regardless of the number of cycles. Second, thermal fatigue resistance was increased in proportion to true tensile fracture strength values of overlay materials. Finally, the number of thermal fatigue cracks per unit length was increased with increasing true tensile fracture strength.

극저온용 오스테나이트계 고망간강의 인장 및 충격 특성에 미치는 C, Mn, Al 첨가의 영향 (Effect of C, Mn and Al Additions on Tensile and Charpy Impact Properties of Austenitic High-manganese Steels for Cryogenic Applications)

  • 이승완;황병철
    • 한국재료학회지
    • /
    • 제29권3호
    • /
    • pp.189-195
    • /
    • 2019
  • The effect of C, Mn, and Al additions on the tensile and Charpy impact properties of austenitic high-manganese steels for cryogenic applications is investigated in terms of the deformation mechanism dependent on stacking fault energy and austenite stability. The addition of the alloying elements usually increases the stacking fault energy, which is calculated using a modified thermodynamic model. Although the yield strength of austenitic high-manganese steels is increased by the addition of the alloying elements, the tensile strength is significantly affected by the deformation mechanism associated with stacking fault energy because of grain size refinement caused by deformation twinning and mobile dislocations generated during deformation-induced martensite transformation. None of the austenitic high-manganese steels exhibit clear ductile-brittle transition behavior, but their absorbed energy gradually decreases with lowering test temperature, regardless of the alloying elements. However, the combined addition of Mn and Al to the austenitic high-manganese steels suppresses the decrease in absorbed energy with a decreasing temperature by enhancing austenite stability.

고온에서 알루미나 박막의 인장특성 (Tensile characteristics of Alumina Thin Film at High Temperature)

  • 선신규;강기주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1344-1347
    • /
    • 2004
  • Recently, Study on measuring property of a micro thin film(nm ~ hundreds of ) under Thermal Mechanical loading. In this work, We perform tensile test at high temperature(1200 ) to investigate mechanical properties of alumina TGO formed under Thermal Barrier Coating. We used Digital Image Correlation method for measuring displacement, and We presented a method of tensile test for thin film at high temperature.

  • PDF