• Title/Summary/Keyword: TENSILE PROPERTY

Search Result 1,288, Processing Time 0.033 seconds

Structural Analysis of Wind Turbine Blades Considering the Bi-modulus Property of Carbon Fiber Composites (탄소섬유 복합재의 Bi-modulus 특성을 반영한 풍력 터빈 블레이드 구조해석)

  • Geunsu Joo;Jin Bum Moon;Si-Hyun Kim;Min-Gyu Kang;Ji-Hoon Kim
    • Journal of Wind Energy
    • /
    • v.13 no.3
    • /
    • pp.53-60
    • /
    • 2022
  • This paper deals with the structural analysis of wind turbine blades considering the bi-modulus property of CFRP, known as a more economic and efficient material for very large blades. The bi-modulus property is an unique characteristic of CFRP that shows higher tensile modulus than compressive modulus. Due to this characteristic, it is needed to apply the bi-modulus property to the computational analysis of CFRP blades to achieve more accurate results. In this paper, a novel method is proposed to apply the bi-modulus property of CFRP in a numerical simulation. To demonstrate the bi-modulus effect in FE analysis, the actual bi-modulus of CFRP was measured and applied to the structural analysis of a wind turbine blade. Moreover, the effects of the proposed method were evaluated by comparing the analysis results with actual full-scale blade static test results. As a result, it was verified that the proposed method could appropriately simulate the bi-modulus during FE analysis. Moreover, the accuracy of blade structural analysis was improved in accordance with the application of the bi-modulus property.

Effect of Sr and (Ti-B) Additives on Tensile Properties of AC4A Recycled Aluminum Casting Alloys (재활용 AC4A 알루미늄 합금의 인장특성에 미치는 (Ti-B), Sr 첨가제의 영향)

  • Oh, Seung-Hwan;Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.38 no.5
    • /
    • pp.87-94
    • /
    • 2018
  • The effects of Sr and (Ti-B) additives on the tensile properties of AC4A recycled (35% scrap content) aluminum alloys were investigated. An acicular morphology of the eutectic Si phase of as-cast specimens was converted to a fibrous morphology upon the addition of Sr. Moreover, morphology of the Sr modified eutectic Si phase became finer due to a T6 heat treatment. The grain size of the ${\alpha}$-solid solution was decreased by the addition of (Ti-B) additives. Depending on the treatment conditions of the as-cast specimens, i.e., no addition, a Sr addition and a (Ti-B)+Sr addition, the tensile strength levels of the as-cast specimens were 182, 192, and 204MPa, respectively. The corresponding strengths of T6 heat-treated specimens were 293, 308, and 318MPa. Elongations of the as-cast specimens were 2.2, 3.1, and 5.6%, and the corresponding elongations of the T6 heat-treated specimens were 4.6, 6.1, and 7.6%. The percentage of the reduced section area in the tensile specimens was also increased by the Sr and (Ti-B) additives. Sr and (Ti-B) additives changed the microstructure and the distribution of defects in the castings, resulting in an improvement of the tensile properties of AC4A aluminum alloys. According to our test results, recycled (35% scrap content) AC4A aluminum alloy met all of the KS requirements of the tensile strength and elongation values of AC4A aluminum alloy except for the elongation value of the one specimen condition, in this case the as-cast no-addition condition.

A Study on Fatigue Characteristics of Aircraft Brake Disk Material (CFRC) (항공기 브레이크 디스크(CFRC)의 피로특성연구)

  • Kim, Hye Sung;Kim, Hyun Soo;Kam, Moon Gap;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.3
    • /
    • pp.131-136
    • /
    • 2008
  • The fatigue characteristics of the carbon fiber reinforced carbon composites (CFRC) material are necessary for the advanced industries requiring the thermal resistance. The research and development of CFRC have been in progress in the field of aerospace and defense industry. In this paper, we investigated the fatigue characteristics of CFRC by using an aircraft brake disk system. As the results of a series of tensile tests, the tensile strengths of CFRC were appeared 102.8 MPa ($0^{\circ}$), 98.6 MPa ($60^{\circ}$), and 95.5 MPa ($90^{\circ}$), respectively. It was showed that CFRC had better tensile property than the usual composite materials. As the results of fatigue tests, the fatigue limit was ~ 77 MPa, which is under the 75% of the maximum tensile load. CFRC is recommended as a strong potential composite materials because the carbon fibers are closely packed and strongly bonded between the carbon fibers.

A Study on Development of Insert Metal for Liquid Phase Diffusion Bonding of Fe Base Heat Resistance Alloy (Fe 기내열합금의 액상확상접합용 삽입금속의 개발에 관한 연구)

  • 강정윤;김인배;이상래
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.147-156
    • /
    • 1995
  • The change of microstructure in the bonded interlayer and tensile properties of joints were studied for liquid phase diffusion bonding using STS-310 and Incoloy-825 as base metal and base metal+B alloy as insert inetal. Main experimental results obtained in this study are as follows. 1) The optimum amount of B addition into the insert metal was found to be about 4mass%. 2) When isothermal solidification was completed, the microstructure in the bonded interlayer was the same with that of the base metal because of the grain boundary migration in the bonded interlayer. 3) All of the tensile specimen fractured at base metal and joints bonded at optimum condition exhibited tensile properties in excess of base metal requirements. 4) It was determined that fine car-borides and bordes such as M$_{23}$(C,B)$_{6}$, Cr$_{2}$B, and CrB in STS-310S and TiB in Incoloy-825 exist at the grain boundary around bonded interlayer. These precipitates almost disappeared after homogenizing treatment at 1373K for 86.4ks.s.

  • PDF

Infill Print Parameters for Mechanical Properties of 3D Printed PLA Parts (3D 프린팅으로 출력된 PLA 시편의 채움 밀도에 따른 기계적 물성 평가)

  • Seol, Kyoung-SU;Zhao, Panxi;Shin, Byoung-Chul;Zhang, Sung-Uk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.9-16
    • /
    • 2018
  • Recently, the demand for eco-friendly parts has increased to reduce materials and parts that use fossil fuels. This has exacerbated the increase of energy prices and the enforcement of regulations by environmental agencies. Currently, polylactic acid (PLA) is a solution, as a common and eco-friendly material. PLA is a biodegradable material that can replace traditional petrochemical polymers. PLA has great advantages since it is resistant to cracking and shrinkage. When it is manufactured, there are few harmful byproducts. Improvement in the brittleness characteristics is another important task to be monitored throughout the production of industrial parts. Improvement in the brittleness property of products lowers the tensile strength and tensile elasticity modulus of the parts. This study focused on the mechanical properties of 3D-printed PLA parts. Tensile tests are performed while varying the infill print parameters to evaluate the applicability of PLA in several industrial areas.

Evaluation of Characteristic Improvement of Waste-Polyethylene Asphalt Concrete (폐폴리에틸렌 필름 재활용 아스팔트 콘크리트의 특성 분석)

  • Kim, Kwang-Woo;Li, Xing-Fan;Jeong, Seung-Ho;Lee, Soon-Jae;Lee, Gi-Ho
    • International Journal of Highway Engineering
    • /
    • v.4 no.1 s.11
    • /
    • pp.161-170
    • /
    • 2002
  • This study is a fundamental research for recycling waste polyethylene film(WPF) in asphalt concrete for roadway pavement. The objective of this study is to develop technology of making waste polyethylene asphalt mixture and evaluate properties of the asphalt concrete containing WPF. Asphalt concrete for surface course of pavement was produced through an appropriate mix-design using dense-graded and gap-graded aggregates. Marshall mix design, indirect tensile strength test, wheel tracking test and tensile fatigue test were performed. Test result showed that some WPF asphalt mixtures had a high tensile property and good resistances against rutting and fatigue cracking, compared with normal asphalt mixture.

  • PDF

Effects of Tungsten Addition on Tensile Properties of a Refractory Nb-l8Si-l0Ti-l0Mo-χW (χ=0, 5, 10 and 15 mot.%) In-situ Composites at 1670 K

  • 김진학;Tatsuo Tabaru;Hisatoshi Hirai
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.233-233
    • /
    • 1999
  • To investigate the effect of tungsten addition on mechanical properties, we prepared refractory (62χ)Nb-18Si-l00Mo-l0Ti-χW (χ=0, 5, 10 and 15 mol.%) in-situ composites by the conventional arc-casting technique, and then explored the microstructure, hardness and elastic modulus at ambient temperature and tensile properties at 1670 K. The microstructure consists of relatively fine (Nb, Mo, W, Ti)/sub 5/Si₃, silicide and a Nb solid solution matrix, and the fine eutectic microstructure becomes predominant at a Si content of around 18 mol.%. The hardness of (Nb, Mo, W, Ti(/sub 5/Si₃, silicide in a W-free sample is 1680 GPa, and goes up to 1980 GPa in a W 15 mol.% sample. The hardness, however, of Nb solid solution does not exhibit a remarkable difference when the nominal W content is increased. The elastic modulus shows a similar tendency to the hardness. The optimum tensile properties of the composites investigated are achieved at W 5 mol.% sample, which exhibits a relatively good ultimate strength of 230 MPa and an excellent balance of yield strength of 215 MPa, and an elongation of 3.7%. The SEM fractography generally indicates a ductile fracture in the W-free sample, and a cleavage rupture in W-impregnated ones.

Study on the Mechanical Properties of TiAl Crystals Grown by a Floating Zone Method

  • Han, Chang-Suk;Kim, Sang-Wook
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.369-373
    • /
    • 2017
  • Unidirectionally solidified TiAl alloys were prepared by optically-heated floating zone method at growth rates of 10 to 70 mm/h in flowing argon. The microstructures and tensile properties of these crystal bars were found to depend strongly on the growth rate and alloy composition. TiAl alloys with composition of 47 and 50 at.%Al grown under the condition of 10 mm/h showed $Ti_3Al({\alpha}_2)/TiAl({\gamma})$ layer structures similar to single crystals. As the growth rate increased, the alloys with 47 and 50 at.%Al compositions showed columnar-grain structures. However, the alloys fabricated under the condition of 10 mm/h had a layered structure, but the alloy with increased growth rate consisted of ${\gamma}$ single phase grains. The alloy with a 53 at.%Al composition showed a ${\gamma}$ single phase regardless of the growth rate. Room-temperature tensile tests of these alloys revealed that the columnar-grained material consisting of the layered structure showed a tensile ductility of larger than 4 % and relatively high strength. The high strength is caused by stress concentration at the grain boundaries; this enhances the secondary slip or deformation twinning across the layered structure in the vicinity of the grain boundaries, resulting in the appreciable ductility.