• Title/Summary/Keyword: TENSILE PROPERTY

Search Result 1,283, Processing Time 0.024 seconds

Finite Element Damage Analysis for Cast Stainless Steel (CF8M) Material Considering Variance in Experimental Data (Cast Stainless Steel (CF8M) 재료의 시험결과 분산을 고려한 유한요소 손상해석)

  • Jeon, Jun-Young;Kim, Nak-Hyun;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.769-776
    • /
    • 2012
  • The damage analysis method in this paper needs a material property and failure criteria. The material properties and the failure criteria could be easily obtained from the results of notched bar tensile tests carried out on other materials studied previously. However, for the cast stainless steel (CF8M) material in this paper, because of the variance in the results from notched bar tensile tests under the same conditions, the material property and the failure criteria could be obtained differently, depending on the analyzer. Therefore, a proper procedure that can confirm the material property and failure criteria are needed. In this work, the averaged material property was obtained from the notched bar with a 16-mm notch radius, and three failure criteria for CF8M material by finite element analysis were obtained. Applying the material property and the failure criteria, FE damage analysis for the J-R fracture toughness test was conducted. For validation, the simulated results were compared with the experimental results.

Physical Property and Virtual Sewing Image of Lyocell treated with Epichlorohydrine for the fibrillation control

  • Park, Ji-Yang;Jeon, Dong-Won;Kim, Sin-Hee
    • Journal of Fashion Business
    • /
    • v.12 no.6
    • /
    • pp.46-60
    • /
    • 2008
  • Lyocell is a regenerated cellulosic fiber manufactured by an environmentally friendly process. The major advantages of lyocell are the excellent drape forming property, the genuine bulkiness, smooth surface, and high dry/wet tenacities. However, one drawback of lyocell is its fibrillation property, which would degrade its aesthetic quality and lower the consumer satisfaction. In our previous studies, lyocell was treated with epichlorohydrin, a non-formalin based crosslinker, to reduce its fibrillation tendency. To investigate the changes of physical properties upon ECH-treatment, the hand characteristics of ECH-treated fabric were observed using KES-FB system and the 3D-virtual sewing image of the fabrics were obtained using 3D CAD simulation system in this study. Since epichlorohydrin(ECH) treatment was conducted in the alkaline medium, the weight reduction was observed in all treated lyocell. The treated lyocell became light, smooth and flexible in spite of ECH crosslinker application. LT and RT in tensile property upon the ECH treatment did not change significantly, however, EMT and WT in the tensile property increased. The significant decrease in bending rigidity was resulted in all ECH-treated lyocell, which is the result of the weight loss upon the alkali condition of ECH treatment. The bending rigidity increased again in the ECH 30% treated lyocell, however, the B value is still lower than the original. Therefore, the ECH-treated lyocell would be more stretchable and softer than the original. Shear rigidity was also decreased in all ECH-treated lyocell, which would result in more drape and body fitting when it is made as a garment. The ECH-treated fabric showed the softer smoother surface according to SMD value from KES evaluation. The virtual 3D sewing image of the ECH-treated lyocell did not show a significant change from that of the original except ECH 30% treated lyocell. ECH 30% treated lyocell showed a stiffer and more puckered image than the original.

A Study on Tensile Property due to Stacking Structure by Fiber Design of CT Specimen Composed of CFRP (CFRP로 구성된 CT시험편의 섬유설계에 의한 적층구조에 따른 인장 특성 연구)

  • Hwang, Gue-Wan;Cho, Jae-Ung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.11
    • /
    • pp.447-455
    • /
    • 2017
  • At the modern industry, the composite material has been widely used. Particularly, the material of carbon fiber reinforced plastic hardened with resin on the basis of fiber is excellent. As the specific strength and rigidity are also superior, it receives attention as the light material. Among these materials, the carbon fiber reinforced plastic using carbon fiber has the superior mechanical property different from another fiber. So, it is utilized in vehicle and airplane at which high strength and light weight are needed at the same time. In this paper, the tensile property due to the fiber design is investigated through the analysis study with CT specimen composed of carbon plastic reinforced plastic. At the stress analysis of CFRP composite material with hole, the fracture trend at the tensile environment is examined. Also, it is shown that the lowest stress value happens and the deformation energy of the pre-crack becomes lowest at the analysis model composed of the stacking angle of 60° through the result due to the stacking angle. On the basis of this study result, it is thought to apply the foundation data to anticipate the fracture configuration at the structure applied with the practical experiment.

A Study on the Dyeing Property of EVA Blended Polypropylene Fiber (EVA로 Blending된 Polypropylene Fiber의 염색성에 관한 연구)

  • 장철민;임상규;김삼수;손태원;서말용
    • Textile Coloration and Finishing
    • /
    • v.10 no.5
    • /
    • pp.13-18
    • /
    • 1998
  • Polypropylene-ethylene/vinyl acetate copolymer (PP-EVA) blends were prepared by mechanical blending using relatively semi-crystaline ethylene-vinyl acetate copolymer and polypropylene. In order to obtain dyeable PP fiber, PP-EVA blends were prepared using below 10wt.% of EVA and formed a filament by the melt spinning method. The resultant fibers had tensile strengh of 2∼3g/d, elongation of 330∼600%, initial modulus of 22∼46g/d, and exhibited markedly improved dyeing property.

  • PDF

An Investigation on the Microstructure Evolution and Tensile Property in the Weld Heat-Affected Zone of Austenitic FeMnAlC Lightweight Steels (오스테나이트계 FeMnAlC 경량철강의 용접열영향부 미세조직 변화 및 인장특성에 관한 연구)

  • Moon, Joonoh;Park, Seong-Jun
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • IMicrostructure evolution and tensile property in the weld heat-affected zone (HAZ) of austenitic Fe-30Mn-9Al-0.9C lightweight steels were investigated. Five alloys with different V and Nb content were prepared by vacuum induction melting and hot rolling process. The HAZ samples were simulated by a Gleeble simulator with welding condition of 300kJ/cm heat input and HAZ peak temperatures of $1150^{\circ}C$ and $1250^{\circ}C$. Microstructures of base steels and HAZ samples were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and their mechanical properties were evaluated by tensile tests. The addition of V and Nb formed fine V and/or Nb-rich carbides, and these carbides increased tensile and yield strength of base steels by grain refinement and precipitation hardening. During thermal cycle for HAZ simulation, the grain growth occurred and the ordered carbide (${\kappa}-carbide$) formed in the HAZs. The yield strength of HAZ samples (HAZ 1) simulated in $1150^{\circ}C$ peak temperature was higher as compared to the base steel due to the formation of ${\kappa}-carbide$, while the yield strength of the HAZ samples (HAZ 2) simulated in $1250^{\circ}C$ decreased as compared to HAZ 1 due to the excessive grain growth.

Effect of the welding speed on the characteristics of Nd:YAG laser welds for automotive application : 600MPa PH high strength steel (600MPa급 자동차용 석출경화형 고장력강판 Nd:YAG 레이저 용접부의 특성에 미치는 용접속도의 영향)

  • Han, Tae-Kyo;Jung, Byung-Hun;Kang, Chung-Yun
    • Laser Solutions
    • /
    • v.10 no.3
    • /
    • pp.25-32
    • /
    • 2007
  • The effect of welding speed on the weldability, microstructures, hardness, tensile property of Nd:YAG laser welding joint in 600MPa grade precipitation hardening high strength steel was investigated. A shielding gas was not used, and bead-on-plate welding was performed using various welding speeds at a power of 3.5kW. Porosity in the joints occurred at 1.8m/min, but were not observed over the welding speed of 2.1m/min. However, spatter occurred over the welding speed of 6.6m/min. The hardness was the highest at heat affected zone(HAZ) near fusion zone(FZ), and was decreased on approaching to the base metal. The maximum hardness increased with increasing welding speed. The microstructure of FZ was composed of coarse grain boundary ferrite and bainite(upper) but the HAZ near the FZ contained bainite(Lower) and fine ferrite at a low welding speed. With increasing welding speed, ferrite at the FZ and the HAZ became finely and upper binite changed to lower bainite. In a perpendicular tensile test to the weld line, all specimens were fractured at the base metal, and the tensile strength and the yield strength of joints was equal to those of raw material. Elongation was found to be lower than that of the raw material.

  • PDF

Dispersion and property evaluation of nanocomposites by aspect ratio of MWCNT (다중벽 탄소나노튜브 형상비에 따른 나노복합재료 분산 및 물성 평가)

  • Jang, Jung-Hoon;Yi, Jin-Woo;Lee, Won-Oh;Lee, Hak-Gu;Um, Moon-Kwang;Kim, Jin-Bong;Byun, Joon-Hyung
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.58-63
    • /
    • 2010
  • Tensile and flexural properties and electrical conductivity of MWCNT/epoxy composites with different aspect ratios of MWCNTs were compared. The MWCNT/epoxy mixtures were prepared by mechanical dispersion methods using a homomixer and a three-roll mill, and then composite samples were fabricated by compression molding process. The fractured surfaces of the samples were observed by SEM in order to evaluate the degree of dispersion of MWCNTs. The addition of MWCNTs into epoxy resin improved its tensile strength by 7.0% while its flexural strength increased slightly as compared with the one without MWCNTs. In the case of MWCNTs having highest aspect ratio, the mechanical properties of the composites were decreased. When the contents of CM-95 MWCNTs were varied, maximum of tensile and flexural strengths occurred at 1wt% and 0.5wt%, respectively. From the higher contents than these, tensile and flexural strengths of the composites decreased. Electrical conductivities of in-plane and thought-the-thickness directions of MWCNT/epoxy composites were measured using a two-point probe method. They increased with the increase of the aspect ratios and concentrations of MWCNTs in the epoxy matrix.

Effect of welding condition on microstructures of weld metal and mechanical properties in Plasma-MIG hybrid welding for Al 5083 alloy (알루미늄 5083 합금의 플라즈마 미그 하이브리드 용접시 용접부 미세조직과 기계적 성질 변화에 미치는 용접조건의 영향)

  • Park, Sang-Hyeon;Lee, Hee-Keun;Kim, Jin-Young;Chung, Ha-Taek;Park, Young-Whan;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.61-71
    • /
    • 2015
  • The effect of welding condition on microstructure and mechanical property of Plasma-MIG Hybrid Weld between Al 5083 plates(thickness : 10mm) was investigated. 1 pass weld without any defects such as puckering, undercut, and lack of fusion was obtained by 150~200A of plasma current and 5~7mm of welding speed. Gas porosities and shrinkage porosities were existed in the weld near fusion line. As welding speed and plasma current were decreasing, the area fraction of porosity was increasing. The hardness of the weld is increasing as welding speed. On the basis of microstructural analysis, Mg segregated region near dendrite boundaries tends to increase with the welding speed. In the result of hardness test, Distribution of hardness in fusion zone showed little change with the plasma current. However, when the welding speed increased, hardness in weld metal markdly increased. It could be considered that effect of heat input to growth of the dendritic solidification structures. Based on tensile test, tensile properties of weld metal was predominated by area fraction of porosities. Consequently, tensile properties can be controlled by formation site and area fraction of porosity.

An Experimental Study on the Physical Property of Non-Vulcanized Waterproofing Synthetic Rubber Sheet for the Underground Concrete Wall (지하 콘크리트 벽체용 미가황 합성고무시트 방수재의 물성에 관한 실험적 연구)

  • Choi, Eun Su;Lee, Dae Woo;Seo, Sang Kyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.69-78
    • /
    • 2012
  • This paper study on the physical property of naturally vulcanizing waterproofing synthetic rubber sheet for the underground concrete wall. In order to finding the naturally vulcanizing time, the relation of vulcanizing time and tensile strength is analysed from non-vulcanizing to naturally vulcanizing time. Physical tests such as tensile strength, tear strength: etc., under the thermal environment temperature at $-20^{\circ}C$, $-10^{\circ}C$, $20^{\circ}C$, $60^{\circ}C$. The result of experiment show that the developed rubber sheet has the delay time about 85 days and the curing time about 35 days. The tensile strength increased by about 692% and coefficient of expansion decreased by about 10% which value can be sufficiently compensate the demerit of vulcanized rubber sheet. Also, all of the physical properties of the naturally rubber sheet satisfy the KS standard and compare to the vulcanized rubber sheet, the developed naturally rubber sheet have excellent durability.

Effects of Vulcanization Type end Temperature on Physical Properties of Natural Rubber Compounds (가황형태 및 온도가 천연고무 컴파운드의 물리적 특성에 미치는 영향)

  • Rhee, John-M.;Yoon, Chan-Ho;Huh, Yang-Il;Han, Seung-Cheol;Nah, Chang-Woon
    • Elastomers and Composites
    • /
    • v.35 no.3
    • /
    • pp.173-179
    • /
    • 2000
  • Cure characteristics. tensile properties, and dynamic properties were investigated on the carbon black-filled natural rubber compounds, in which three typical vulcanization types conventional vulcanization(Conv), semi-efficient(Semi-EV), and efficient(EV) vulcanizations were used. The effects of vulcanization temperature on both the mechanical property and aging resistance of rubber compounds were also investigated. The Conv cure system showed a slightly slower rate of vulcanization than those of Semi-EV and EV ones. On the other hand, it showed a higher value in the maximum torque of cure curve. Higher tensile moduli were observed in Conv system than those in Semi-EV and EV ones, while lower elongation at break were obtained in Conv one. The tensile strength at break were found to be about the same for three cute systems. Hardness, modulus, and tensile strength decreased with increasing the vulcanization temperature, and the degree of changes in the properties was found to be smaller for EV and Semi-EV systems than that in Conv one. The EV system was found to be superior in thermal-aging resistance to Conv one.

  • PDF