• 제목/요약/키워드: TENSILE PROPERTY

검색결과 1,283건 처리시간 0.029초

$ CO_2$레이저 합체박판 용접부의 기계적 물성평가 (Evaluation of Mechanical Properties of Welded Metal in Tailored Steel Sheet Welded by $ CO_2$ Laser)

  • 구본영;금영탁
    • 한국정밀공학회지
    • /
    • 제18권4호
    • /
    • pp.142-150
    • /
    • 2001
  • Automotive manufactures have taken more interests in tailored sheet metals for improving the rigidity, weight reduction, crash durability, and cost savings so that their application to auto-bodies has been increased. However, since the tailored sheet metals do not behave like un-welded sheet metals in press forming operations, the stamping engineers no longer rely only on conventional forming techniques. Futhermore, there is no clear understanding of the characteristics of welded metal which influence the overall press formability of tailored sheet metals. Recently, the computer simulations are prevailing for the evaluation of the formability. Unfortunately, the mechanical property of tailored sheet metal has to be quantitatively defined in the simulation. In this study, the analytical equations are formulated in order to find the mechanical properties of the welded metal in the tailored sheet metal welded by co$_2$laser. Based on force distribution assumption, the constitutive behavior of the welded metal is investigated using uniaxial tensile test results of base metals and tailored sheet metal. Then, the strength coefficient, work-hardening exponent, and plastic strain ratio of laser-welded metal are calculate from those of base metals and tailored sheet metal. In addition, the existence of weld defects in the welded metal is indirectly detected by examining the slop of strength coefficient of the welded metal.

  • PDF

크리프-피로 손상된 페라이트기 9Cr 내열강의 미세조직 발달과 자기적 특성 (Microstructural Evolution and Magnetic Property of Creep-Fatigued Ferritic 9Cr Heat-Resisting Steel)

  • 김정석;권숙인;박익근
    • 비파괴검사학회지
    • /
    • 제27권5호
    • /
    • pp.417-425
    • /
    • 2007
  • 보자력 측정을 통하여 페라이트기 9Cr-1Mo-V-Nb 내열강의 크리프-피로변형 동안 미세조직의 변화를 평가하였다. 크리프-피로시험은 $550\;^{\circ}C$에서 각각 인장유지시간을 60초와 600초로 하여 수행 하였다. 보자력은 파단 전까지 감소하였고 경도는 파단 시까지 지속적으로 감소하였다. 크리프-피로 수명소비율이 증가함에 따라서 $M_{23}C_6$ 탄화물은 오스트왈드 성장기구를 따라서 조대화가 나타났지만 MX 탄질화물은 $550\;^{\circ}C$에서 안정하기 때문에 조대화가 나타나지 않았다. 마르텐사이트 래스 폭은 래스경계에서의 전위회복으로 인해 증가하였다. 보자력은 전위, 석출물 그리고 마르텐사이트 래스경계와 같은 미세조직적 특성에 영향을 받게 되며 이를 미세조직변화와 관련하여 이해하였다. 결과적으로, 본 연구는 페라이트기 9Cr-1Mo-V-Nb 내열강의 크리프-피로변형 동안 미세조직의 변화와 손상 정도를 보자력을 통하여 평가하는 것을 제안하였다.

PEMFC용 금속분리판 코팅 기술 개발 : II. 코팅 금속분리판 연료전지 성능 특성 연구 (Development of Surface Coating Technology for Metallic Bipolar Hate in PEMFC : II. Study on the PEMEC Performance of Coated Metallic Bipolar Plate)

  • 윤용식;정경우;양유창;안승균;전유택;나상묵
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.352-355
    • /
    • 2006
  • As the stainless steel has good corrosion resistance, mechanical property and ease of manufacture, it has been studied as the candidate material of metallic bipolar plate for automotive PIMFC. But, metal is dissolved under fuel cell operating conditions Dissolved ions contaminate a membrane electrode assembly (MEA) and, decrease the fuel cell performance. In addition, metal oxide formation on the surface of stainless steel increases the contact resistance in the fuel cell. These problems have been acted as an obstacle in the application of stainless steel to bipolar plate. Therefore, many kinds of coating technologies have been examined in order to solve these problems. In this study, stainless steel was coated in order to achieve high conductivity and corrosion resistance by several methods. Contact resistance was measured by using a tensile tester and impedance analyzer Corrosion characteristics of coated stainless steel were examined by Tafel-extrapolation method from the polarization curves in a solution simulating the anodic and cathodic environment of PEMFC. Fuel cell performance was also evaluated by single cell test. We tested various coated metal bipolar plate and conventional and graphite were also tested as comparative samples. In the result, coated stainless steel bipolar plate exhibited better cell performance than graphite to bipolar plate.

  • PDF

골판지 고지의 물리화학적 처리에 의한 강도향상(제2보) (Strength Property Improvement of OCC-based Paper by Chemical and Mechanical Treatments (II))

  • 이종훈;서영범;전양;이학래;신종호
    • 펄프종이기술
    • /
    • 제32권2호
    • /
    • pp.1-7
    • /
    • 2000
  • In the previous experiment, it was found that OCC pre-treatment with Hobart mixer at 20-25% consistency for 3 hrs or more followed by the application of the equal refining time, caused the increase of tensile strength, burst strength, compressive strength and tear resistance, compared to the no pre-treated. Four completely different fibers, which were Hw-BKP, Sw-BKP, White ledger, and OCC were selected for this experiment to investigate the effect of mechanical pre-treatment process on different fibers. From the experiment, it was found that the mechanical pre-treatment did not decrease fiber length at all, but decreased freeness, com-pared to the no pre-treated, when the same refining time was applied. WRVs of the pre-treated fibers were higher than the no pre-treated at the same freeness level. It was speculated that the mechanical pre-treatment induced only hydrophilic nature of fibers without damaging fiber length by delaminating fiber walls. The fiber surface area and the physical strength differences of handsheets will be discussed in the next publication.

  • PDF

FRP-콘크리트 합성말뚝의 개발 (Development of the Hybrid CFFT Pile)

  • 최진우;주형중;남정훈;윤순종
    • 복합신소재구조학회 논문집
    • /
    • 제1권2호
    • /
    • pp.20-28
    • /
    • 2010
  • 이 논문에서는 기존의 CFFT(Concrete Filled FRP Tube) 복합재 말뚝의 휨강성을 확보하기 위한 새로운 복합재 말뚝형식을 제안하였다. 기존의 CFFT 복합재 말뚝은 필라멘트와인딩 공정으로 제작한 FRP를 사용하기 때문에, 압축력이 편심재하될 경우 휨거동에 대한 안전성을 확보하기 위해 철근 등 별도의 보강재를 필요로 한다. 이 연구에서는 별도의 보강재 없이 휨거동에 대한 저항성을 확보하기 위하여 펄트루젼 방식으로 제작된 FRP를 CFFT 외부에 원주방향으로 부착시킨 FRP-콘크리트 합성말뚝(Hybrid CFFT, HCFFT)을 제안하였다. 이 논문은 HCFFT의 구조적 거동을 검토하기 위한 연구의 일부로서, HCFFT에 사용되는 필라멘트와인딩 FRP의 역학적 특성을 알기 위한 실험을 실시하였다. 또한, 기존 연구 결과를 참조하여 HCFFT의 압축강도를 추정하였으며, 유한요소해석을 통해 얻은 결과와 비교분석하였다.

  • PDF

열간 등압 성형된 니켈기 초내열 합금 IN 713C 분말 소결체의 특성 평가 (Characterization of Hot Isostatically Pressed Ni-Based Superalloy IN 713C)

  • 김영무;김은표;정성택;이성;노준웅;이성호;권영삼
    • 한국분말재료학회지
    • /
    • 제20권4호
    • /
    • pp.264-268
    • /
    • 2013
  • Nickel-based superalloy IN 713C powders have been consolidated by hot isostatic pressing (HIPing). The microstructure and mechanical properties of the superalloys were investigated at the HIPing temperature ranging from $1030^{\circ}C$ to $1230^{\circ}C$. When the IN 713C powder was heated above ${\gamma}^{\prime}$ solvus temperature (about $1180^{\circ}C$), the microstructure was composed of the austenitic FCC matrix phase ${\gamma}$ plus a variety of secondary phases, such as ${\gamma}^{\prime}$ precipitates in ${\gamma}$ matrix and MC carbides at grain boundaries. The yield and tensile strengths of HIPed specimens at room temperature were decreased while the elongation and reduction of area were increased as the processing temperature increased. At $700^{\circ}C$, the strength was similar regardless of HIPing temperature; however, the ductility was drastically increased with increasing the temperature. It is considered that these properties compared to those of cast products are originated from the homogeneity of microstructure obtained from a PM process.

Fe-0.4C-2.3Si강의 기계적 성질에 미치는 오스템퍼링 열처리 조건의 영향 (Effects of Heat Treatment Condition on the Mechanical Properties in Fe-0.4%C-2.3%Si Steel)

  • 손제영;송준환;김지훈;예병준
    • 한국주조공학회지
    • /
    • 제32권2호
    • /
    • pp.104-108
    • /
    • 2012
  • The effect of heat treatment on mechanical properties of 0.4C-2.3Si(wt%) steel with bainitic ferrite matrix were investigated. This steel has been synthesized intergrating concepts from TRIP(Transformation Induced Plasticity) steel & Austempered Ductile Cast Iron(ADI) technology. The low alloy medium carbon (0.4 %C) steel with high silicon (2.3 %Si) was initially annealed for 60 min at $800^{\circ}C$, $820^{\circ}C$ and $840^{\circ}C$ respectively in the intercritical region and then subsequently austempered at various temperatures at $260^{\circ}C$, $320^{\circ}C$ and $380^{\circ}C$ for 30 min in a salt bath. The mechanical properties were measured by using a tensile test. A detailed study of the microstructure of this steel after heat treatment was carried out by means of electron back scattering diffraction (EBSD) technic. In this study, a new low alloy steel with high strength (780~1,050MPa) and exceptionally high ductility (20~40%) was obtained.

Cool Roof 성능을 확보한 Honey Comb Panel 지붕 접합부의 인발 성능 평가 (Evaluation of Pull-Out Strength of Connections with Roof Cladding using Honey Comb Panel Secured Cool Roof Performance)

  • 이인호;박상우;고광일;정미자;이은택
    • 한국강구조학회 논문집
    • /
    • 제28권3호
    • /
    • pp.139-149
    • /
    • 2016
  • 건물의 지붕 외장재는 강한 풍압 또는 태풍으로 인한 부압으로 지붕 외장재와 지붕 골조 간에 접합철물인 스크류가 인발되어 지붕외장재의 박리, 비산을 초래함으로써 인명, 재산적 피해가 발생함으로서 스크류 인발에 대한 대책이 요구되고 있다. 본 연구에서는 '인서트 너트'라는 철물을 지붕외장재가 설치되는 프레임에 체결하여 스크류의 관통 깊이를 증가시켜 인발 저항력을 높였으며 시험편 인장실험을 통한 단순 스크류 접합과 인서트 너트 접합의 인발 강도를 비교하였고 Solid Work를 이용한 모델링 해석을 통해 실제 사용되는 지붕외장재와 동일한 조건의 실험체를 제작하여 정적실험 및 가상의 풍하중을 이용한 동적실험을 통해 일반적인 스크류 접합 지붕외장재와 인서트 너트를 사용한 지붕외장재를 비교하였다.

인발가공에 의해 제조된 전선용 Al-Fe-Mg-Cu-B계 합금의 기계적 및 전기적 특성 (Mechanical and Electrical Properties of an Al-Fe-Mg-Cu-B System Alloy for Electrical Wire Fabricated by Wire Drawing)

  • 정창기;우츠노미야 히로시;손현택;이성희
    • 한국재료학회지
    • /
    • 제27권11호
    • /
    • pp.597-602
    • /
    • 2017
  • In this study, an Al-0.7wt%Fe-0.2wt%Mg-0.2wt%Cu-0.02wt%B alloy was designed to fabricate an aluminum alloy for electrical wire having both high strength and high conductivity. The designed Al alloy was processed by casting, extrusion and drawing processes. Especially, the drawing process was done by severe deformation of a rod with an initial diameter of 12 mm into a wire of 2 mm diameter; process was equivalent to an effective strain of 3.58, and the total reduction in area was 97 %. The drawn Al alloy wire was then annealed at various temperatures of 200 to $400^{\circ}C$ for 30 minutes. The mechanical properties, microstructural changes and electrical properties of the annealed specimens were investigated. As the annealing temperature increased, the tensile strength decreased and the elongation increased. Recovery or/and recrystallization occurred as annealing temperature increased, and complete recrystallization occurred at annealing temperatures over $300^{\circ}C$. Electric conductivity increased with increasing temperature up to $250^{\circ}C$, but no significant change was observed above $300^{\circ}C$. It is concluded that, from the viewpoint of the mechanical and electrical properties, the specimen annealed at $350^{\circ}C$ is the most suitable for the wire drawn Al alloy electrical wire.

DEVELOPMENT OF TITANIUM-BASED BRAZING FILLER METALS WITH LOW-MELTING-POING

  • Onzawa, Tadao;Tiyama, Takashi
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.539-544
    • /
    • 2002
  • Titanium and titanium alloy are excellent in corrosion resistance and specific intensity, and also in the biocompatibility. On the other hand, the brazing is bonding method of which productivity and reliability are high, when the complicated and precise structure of the thin plate is constructed. However, though conventional titanium-based brazing filler metal was excellent in bond strength and corrosion resistance, it was disadvantageous that metal structure and mechanical property of the base metal deteriorated, since the brazing temperature (about 1000 C) is considerably high. Authors developed new brazing filler metal which added Zr to Ti-Cu (-Ni) alloy which can be brazed at 900 C or less about 15 years ago. In this paper, the development of more low-melting-point brazing filler metal was tried by the addition of the fourth elements such as Ni, Co, Cr for the Ti-Zr-Cu alloy. As a method for finding the low-melting-point composition, eutectic composition exploration method was used in order to reduce the experiment point. As the result, several kinds of new brazing filler metal such as 37.5Ti-37.5-Zr-25Cu alloy (melting point 825 C) and 30Ti-43Zr-25Cu-2Cr alloy (melting point: 825 C) was developed. Then, the brazing joint showed the characteristics which were almost equal to the base metal from the result of obtaining metallic structure and strength of joint of brazing joint. However, the brazing filler metal composition of the melting point of 820 C or less could not be found. Consequentially, it was clarified that the brazing filler metal developed in this study could be practically sufficiently used from results such as metal structure of brazing joint and tensile test of the joint.

  • PDF