• Title/Summary/Keyword: TENDL-2021

Search Result 3, Processing Time 0.009 seconds

Production cross sections of radionuclides in the proton induced reactions on natural iron with the proton energy of 57 MeV

  • Sung-Chul Yang;Sang Pil Yoon;Tae-Yung Song;Guinyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1796-1802
    • /
    • 2024
  • The production cross sections of 55,56,57Co, 52gFe, 52g,54Mn, 51Cr, and 48V from the natFe (p,x) reactions were measured using a proton energy of 57 MeV at the Korea Multi-purpose Accelerator Complex (KOMAC) in Gyeongju, Korea. The conventional stacked-foil activation method and offline γ-ray spectroscopy were used to determine the excitation functions of proton induced nuclear reactions on iron. The measured excitation functions were compared with experimental data in literature and theoretical data from the TENDL-2021 library. The present data show generally good agreement with other experimental data, but discrepancies were found between the present data and the excitation functions of the TENDL-2021 library in the investigated energy range, except for 56,57Co and 54Mn.

A Study on the Measurement of the Relative Nuclear Reaction Cross-Section of the natW(p,xn)176Re Reaction using 100 MeV Proton (100 MeV 양성자를 이용한 natW(p,xn)176Re 핵반응의 상대 핵반응단면적 측정에 대한 연구)

  • Lee, Samyol
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.257-263
    • /
    • 2021
  • This study derives the relative cross-section for the natW(p,xn)176Re nuclear reaction by measuring the gamma rays generated from the nuclear reaction with natural tungsten using a 100 MeV linear accelerator of the Korea Multi-purpose Accelerator Complex in the Korea Atomic Energy Research Institute. In general, research on isotopes with a short half-life always shows a tendency that the intensity of radioactivity decreases rapidly within a short period of time, making it very difficult to measure itself. In particular, 176Re is one of the relatively short radionuclides with a half-life of 5.3 minutes. In this study, 109.08 keV gamma rays generated from the 176Re isotope having such a short half-life were measured using a high-purity Ge detector(HPGe detector). The obtained relative measurements were the results in the 8 to 14 MeV proton energy domain published by Richard G. in 1967, and the TENDL-2019 value, which was the result of A. J. Koning in 2019, which evaluated the nuclear reaction cross-section by calculation based on this comparative analysis was performed. The results of this study are expected to be usefully applied to the design of nuclear fusion reactor which is known as future energy sources, elements ratio for the nuclear synthesis of astrophysics.

Study on (n, α) reactions for the production of 51Cr, 89Sr, 99Tc, 131I, 133Xe, 137Cs and 153Sm radioisotopes used in nuclear medicine

  • Hallo M. Abdullah;Ali H. Ahmed
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3352-3358
    • /
    • 2023
  • Nuclear medicine seems to be a decent choice of medicine in the recent decade. The radioactive isotopes 51Cr, 89Sr, 99Tc, 131I, 133Xe, 137Cs and 153Sm are extremely essential in nuclear medicine. The excitation functions of the 54Fe (n, α) 51Cr, 92Zr (n, α) 89Sr, 102Rh (n, α) 99Tc, 134Cs (n, α) 131I, 136Ba (n, α) 133Xe, 140La (n, α) 137Cs and 156Gd (n, α) 153Sm reactions were calculated in this study using the EMPIRE 3.2.3 and TALYS 1.95 nuclear codes. Additionally, the cross sections at 14-15 MeV were calculated using empirical formulae and the experimental data. The computer codes were compared to the experimental data and Empirical formulas as well as the evaluated data (TENDL 2021, JENDL 3.3, JENDL 5, JEFF 3.3, EAF 2010, CENDL 3.1, CENDL 3.2, ROSFOND 2010, FENDL 3.2 b, and BROND 3.1).