• Title/Summary/Keyword: TEMPERATURE GRADIENT

Search Result 1,394, Processing Time 0.028 seconds

Experimental Study on the Thermodynamic Characteristics of Commercial Small-size Moxa Combustion (상용 소형 쑥뜸의 열역학적 특성에 대한 실험적 연구)

  • Lee Geon-Mok;Hwang Yoo-Jin;Lee Gun-Hyee
    • Journal of Acupuncture Research
    • /
    • v.18 no.6
    • /
    • pp.171-187
    • /
    • 2001
  • Objective : Moxibustion has been proved efficacious for many diseases, but isn't widespread in the clinics due to a danger of skin burning, the smoke produced while burning a moxa combustion and so on. Therefore, another type of moxa that can be resolved these troubles is required. To improve the effect of moxibustion and develop the new thermal stimulating treatment, the performance of commercial moxibustion widely used are studied systematically and found out quantitatively. Methods : We have selected two types (small-size moxa A(sMA), small-size moxa B (sMB)) among small-size moxaes used widely in the clinic. We examined combustion time, various temperatures, temperature gradient in each period during a combustion of moxa. Results : 1. The combustion time in the preheating period appeared somewhat longer in sMA than in sMB. 2, The combustion time in the heating period appeared longer in sMA by 26% than in sMB. 3. The average temperature in the heating period was $37.6{\sim}37.8^{\circ}C\;in\;sMA\;and\;36.2{\sim}36.8^{\circ}C$ in sMB and the maximum temperature measured at a center of contact surface in sMA was $48.6^{\circ}C$, higher by over $2.8^{\circ}C$ than that of sMB moxibustion. 4. The average ascending temperature gradient in the heating period was $0.08{\sim}0.1^{\circ}C/sec$ in both moxaes, and the average ascending temperature gradient of heating period in sMB appeared larger. The maximum ascending temperature gradient appeared higher in sMB, and the time reaching maximum ascending temperature gradient appeared much earlier in sMA than in sMB. 5. The combustion time in the retaining period was around 100 sec in sMA and around 275 sec in sMB. 6. The average temperature in the retaining period was $42.2{\sim}46.0^{\circ}C\;in\;sMA\;and\;39.3{\sim}41.4^{\circ}C/sec$ in sMB. The minimum temperature in the retaining period was over $38.80^{\circ}C$ in sMA but just $34.7^{\circ}C$ in sMB. 7. The average descending temperature gradient in sMA was $-0.050{\sim}0.067^{\circ}C/sec$ and in sMB was $-0.030{\sim}0.037^{\circ}C/sec$ 8. The combustion time in the cooling period appeared longer over two times in sMA than in sMB, and the time which the cooling period (minimum temperature) finished at appeared later in sMB by 55 sec. 9. We classified the combustion process that the measured temperature rose over body heat($37^{\circ}C$) into the effective combustion period. The effective combustion time was 233.3 sec in sMA and 300.4 sec in sMB respectively, and was longer by about 29% in sMB. The average temperature and maximum temperature in the effective combustion time appeared higher in sMA. The time taken until the maximum temperature was reached was 225.1 sec in sMA and 244.5 sec in sMB, faster by about 20 sec in sMA. The maximum ascending temperature gradient during the effective combustion period appeared larger about 1.4 times in sMB, but the time when the maximum ascending temperature gradient happened was faster in sMA. Conclusion : It appears that sMB, compared with sMA, is proper if necessary to apply the long time and weak stimulus, because of the gentle stimulus during the relatively longer time. In contrast, sMA that the symmetrical combustion happened is proper if necessary to apply the short time and strong stimulus.

  • PDF

Numerical simulation of slit wall effect on the Taylor vortex flow with radial temperature gradient

  • Liu, Dong;Chao, Chang-qing;Zhu, Fang-neng;Han, Xi-qiang;Tang, Cheng
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.304-310
    • /
    • 2015
  • Numerical simulation was applied to investigate the Taylor vortex flow inside the concentric cylinders with a constant radial temperature gradient. The reliability of numerical simulation method was verified by the experimental results of PIV. The radial velocity and temperature distribution in plain and 12-slit model at different axial locations were compared, and the heat flux distributions along the inner cylinder wall at different work conditions were obtained. In the plain model, the average surface heat flux of inner cylinder increased with the inner cylinder rotation speed. In slit model, the slit wall significantly changed the distribution of flow field and temperature in the annulus gap, and the radial flow was strengthen obviously, which promoted the heat transfer process at the same working condition.

Experimental Study of the Axial Slit Wall and Radial Temperature Gradient Effect on Taylor-Couette Flow (Taylor-Couette 유동에서 축방향 홈과 반경방향 온도구배의 영향에 대한 실험적 연구)

  • Lee, Sang-Hyuk;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.2
    • /
    • pp.33-38
    • /
    • 2008
  • The effect of the radial temperature gradient and the presence of slits in the wall of outer of two cylinders involved in creating a Taylor-Couette flow was investigated by measuring the velocity field inside the gap. The slits were azimuthally located along the inner wall of the outer cylinder and the number of slits used in this study was 18. The radius ratio and aspect ratio of the models were 0.825 and 48, respectively. The heating film wrapped around the inner cylinder was used for generating the constant heat flux and we ensured the constant temperature condition at the outer space of the outer cylinder. The velocity fields were measured by using the PIV(particle image velocimetry) method. The refractive index matching method was applied to remove image distortion. The results were compared with plain wall configuration of Taylor-Couette flow. From the results, the presence of slits in the wall of outer cylinder and temperature gradient increased the flow instability.

Thermal Stress at the Junction of Skirt to Head in Hot Pressure Vessel (고온 수직형 압력용기 Skirt 부의 열응력에 관한 연구)

  • 한명수;한종만;조용관
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.111-121
    • /
    • 1998
  • It is well recognized that a excessive temperature gradient from the junction of head to skirt in axial direction in a hot pressure vessel can cause unpredicted high thermal stress at the junction and/or in axial direction of a skirt. this thermal stress resulting from axial thermal gradient may be a major cause of unsoundness of structural integrity. In case of cyclic operation of hot pressure vessels, the thermal stress becomes one of the primary design consideration because of the possibility of fracture as a result of cyclic thermal fatigue and progressively incremental plastic deformation. To perform thermal stress analysis of the junction and cylindrical skirt of a vessel, or, at least, to inspect quantitatively the magnitude and effect of thermal stress, the temperature profile of the vessel and skirt must be known. This paper demonstrated the temperature distribution and thermal stress analysis for the junction of skirt to head using F.E. analysis. Effect of air pocket in crotch space was quantitatively investigated to minimize the temperature gradient causing the thermal stress in axial direction. Effect of the skirt height on thermal stresses was also studied. Analysis results were compared with theoretical formulas to verify th applicability to the strength calculation in design field.

  • PDF

The experimental study on the Characteristics of the Moxa-Combustion in the retaining period of indirect moxibustion (간접구(間接灸)의 제품별(製品別) 보온기(保溫期) 연소특성(燃燒特性)에 관한 연구(硏究))

  • Yoon, Jung-Sun;Cho, Myung-Rae;Yoon, Yeo-Chung;Park, Young-Bae
    • Journal of Acupuncture Research
    • /
    • v.17 no.1
    • /
    • pp.75-88
    • /
    • 2000
  • In order to obtain the clinical data on the different effects of the three different methods of indirect moxibustion, moxa-combustion time, peak temperature, average temperature, maximum gradient temperature, average gradient temperature, and moxa-combustion calorie rate of the retaining period in ARIRANG, JANG, PUNG were measured through this experiment. The results of the experiment were as follows : 1. In the combustion time, during the retaining period ARIRANG had the longest combustion time followed by PUNG, JANG in a descending order. ARIRANG and JANG were acknowledged to have significant difference with PUNG. ARIRANG and JANG however were not acknowledged to have difference each other. 2. In the average temperature, during the retaining period, PUNG had the highest temperature followed by JANG, ARIRANG in a descending order. ARIRANG and JANG were acknowledged to have significant difference with PUNG. ARIRANG and JANG however were not acknowledged to have difference each other. 3. In the maximum gradient temperature, during the retaining period, PUNG had the highest temperature followed by JANG, ARIRANG in a descending order. JANG and PUNG were acknowledged to have significant difference with ARIRANG. JANG and PUNG however were not acknowledged to have difference each other. 4. In the average gradient temperature, during the retaining period, JANG had the highest temperature followed by ARIRANG, PUNG in a descending order. ARIRANG and JANG were acknowledged to have significant difference with PUNG. ARIRANG and JANG however were not acknowledged to have difference each other. 5. In the moxa-combustion calorie rate, during the retaining period, PUNG had the highest temperature, ARIRANG, JANG were founded in error limits. ARIRANG and JANG were acknowledged to have significant difference with PUNG. ARIRANG and JANG however were not acknowledged to have difference each other.

  • PDF

Thermal field of large-diameter concrete filled steel tubular members under solar radiation

  • Yang, Daigeng;Chen, Guorong;Ding, Xiaofei;Xu, Juncai
    • Computers and Concrete
    • /
    • v.26 no.4
    • /
    • pp.343-350
    • /
    • 2020
  • Concrete-filled steel tubular (CFST) members have been widely used in engineering, and their tube diameters have become larger and larger. But there is no research on the thermal field of large-diameter CFST structure. These studies focused on the thermal field of the large-diameter CFST structure under solar radiation. The environmental factors and the actual placement position were considered, and the finite element model (FEM) of the thermal field of CFST members under solar radiation (SR) was established. Then the FEM was verified by practical experiments. The most unfavorable temperature gradient model in the cross-section was proposed. The testing results showed that the temperature field of the large-diameter CFST member section was non-linearly distributed due to the influence of SR. The temperature field results of CFST members with different pipe diameters indicated that the larger the core concrete diameter was, the slower the central temperature changed, and there was a significant temperature difference between the center and the boundary. Based on the numerical model, the most unfavorable temperature gradient model in the section was proposed. The model showed that the temperature difference around the center of the circle is small, and the boundary temperature difference is significant. The maximum temperature difference is 15.22℃, which appeared in the southern boundary area of the specimen. Therefore, it is necessary to consider the influence of SR on the thermal field of the member for large-diameter CFST members in actual engineering, which causes a large temperature gradient in the member.

An optimal control in cement kiln heat-up (시멘트 소성로 가열 단계에서의 최적 제어)

  • 김송호;이광순;이원규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.468-470
    • /
    • 1986
  • An optimal control in heat-up operation was formulated for minimizing the quadratic performance criterion which is a function of temperature, temperature gradient in the wall and fuel flow rate. For optimal control law computations mathematical model was simplified with assumptions and then linearized by use of orthogonal collocation in radial direction. Effects of weighting function assigned to temperature and temperature gradient and final time were compared with industrial data.

  • PDF

Dendrite Arm Spacing and Carbide Morphology with Thermal Gradient and Solidification Rate in Directionally Solidified Ni-Base Superalloy (일방향 초내열합금에서 응고속도 및 온도구배 따른 수지상간격 및 탄화물 형상 변화)

  • Son, S.D.;Kim, Y.H.;Choi, G.S.;Lee, J.H.;Seo, S.M.;Jo, C.Y.
    • Journal of Korea Foundry Society
    • /
    • v.27 no.2
    • /
    • pp.77-82
    • /
    • 2007
  • The effects of thermal gradient and solidification rate on the dendrite arm spacing and carbide morphology were investigated in directionally solidified Ni-base superalloy, CM 247LC. Thermal gradient was controlled by changing the position of the cold chamber and the furnace set temperature. The interface morphology changed from the planar to dendritic as increasing solidification rate. It was found that the dendrite spacing decreased as increasing the thermal gradient as well as the solidification rate. Also, as increasing solidification rate, carbide morphology changed from blocky shape to script and spotty shapes.

Spalling of heated high performance concrete due to thermal and hygric gradients

  • Zhang, Binsheng;Cullen, Martin;Kilpatrick, Tony
    • Advances in concrete construction
    • /
    • v.4 no.1
    • /
    • pp.1-14
    • /
    • 2016
  • In this study, high performance concrete beams and prisms with high content of PFA were heated to various temperatures up to $450^{\circ}C$ at heating rates of $1^{\circ}C/min$, $3^{\circ}C/min$ and $10^{\circ}C/min$. The thermal gradient was found to increase first with the heating time until a peak value was reached and then decrease until the thermal equilibrium was reached, measured as $115^{\circ}C$, $240^{\circ}C$ and $268^{\circ}C$ for the three heating rates. Spalling occurred on some specimens when the heating temperature was over $400^{\circ}C$ for heating rates of $3^{\circ}C/min$ and $10^{\circ}C/min$. The hygric gradient was found to reach its maximum when the thermal gradient reached its peak. This study indicates that spalling of HPC could happen when the heating temperature was high enough, and both thermal and hygric gradients reached their maxima.

Experimental analysis of thermal gradient in concrete box girder bridges and effects of polyurethane insulation in thermal loads reduction

  • Raeesi, Farzad;Heydari, Sajad;Veladi, Hedayat
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.645-654
    • /
    • 2022
  • Environmental thermal loads such as vertical and lateral temperature gradients are significant factors that must be taken into account when designing the bridge. Different models have been developed and used by countries for simulating thermal gradients in bridge codes. In most of the codes only vertical temperature gradients are considered, such as Iranian Standard Loads for Bridge code (ISLB), which only considers the vertical gradient for bridge design proposes. On the other hand, the vertical gradient profile specified in ISLB, has many lacks due to the diversity of climate in Iran, and only one vertical gradient profile is defined for whole Iran. This paper aims to get the both vertical and lateral gradient loads for the concrete box girder using experimental analysis in the capital of Iran, Tehran. To fulfill this aim, thermocouples are installed in experimental concrete segment and temperatures in different location of the segment are recorded. A three dimensional finite element model of concrete box-girder bridge is constructed to study the effects of thermal loads. Results of investigation proved that the effects of thermal loads are not negligible, and must be considered in design processes. Moreover, a solution for reducing the negative effects of thermal gradients in bridges is proposed. Results of the simulation show that using one layer polyurethane insulation can significantly reduce the thermal gradients and thermal stresses.