• Title/Summary/Keyword: TEMP-W

Search Result 37, Processing Time 0.023 seconds

Synthesis Conditions and Rheological Characteristics of Aluminum Magnesium Silicate (규산알루민산마그네슘의 합성조건과 유동학적 특성)

  • 신화우;정동훈
    • YAKHAK HOEJI
    • /
    • v.39 no.1
    • /
    • pp.68-77
    • /
    • 1995
  • Aluminum magnesium silicate was synthesized by reacting the mixed solutions of sodium aluminate and magnesium chloride with sodium silicate solution in this study. The optimal synthesis conditions based on the yield of the product has been attained according to Box-Wilson experimental design. It was found that the optimal synthetic conditions of aluminum magnesium silicate were as follows: Reaction temperature=$69~81^{\circ}C$; concentration of two reactants, sodium aluminate and magnesium chloride= 13.95~14.44 w/w%; molar concentration ratio of the two reactants, [NaAlO$_{2}$]/MgCl$_{2}$]=3.63~4.00; reaction time= 12~15 min; drying temp. of the product=$70~76^{\circ}C$. Aluminum magnesium silicate synthesized under the optimal synthesis condition was dispersed in 0.75, 1.0 and 1.5w/w% aqueous solution or suspension of six dispersing agents, and the Theological properties of the dispersed systems prepared have been investigated at $15^{\circ}C$ and $25^{\circ}C$ using Brookfield LVT Type Viscometer. The acid-consuming capacity of the most excellent product was 272~278 ml of 0.1N-HCl per gram of the antacid. The flow types of 5.0 w/w% aluminum magnesium silicate suspension were dependent upon the kind and concentration of dispersing agents added. The apparent viscosity of the suspension was generally increased with concentration of dispersing agents and was not significantly changed or decreased as the temperature was raised. A dispersing agent, hydroxypropyl cellulose suspension, exhibited an unique flow behavior of antithixotropy. The flow behavior of the suspension dispersed in a given dispersing agent not always coincided with that of the dispersing agent solution or suspension itself.

  • PDF

Comparative Study of Microstructure and Tensile Properties of 600 and 700 MPa-Grade High-Strength Seismic Resistant Reinforced Steel Bars (내진용 600 및 700 MPa 급 고강도 철근의 미세조직과 인장 특성 비교)

  • Hong, T.W.;Lee, S.I.;Lee, J.H.;Shim, J.H.;Lee, M.G.;Hwang, B.
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.281-288
    • /
    • 2018
  • This study deals with the microstructure and tensile properties of 600 and 700 MPa-grade high-strength seismic reinforced steel bars. High-strength seismic resistant reinforced steel bars (SD 600S and SD 700S) were fabricated by TempCore process, especially the SD 700S specimen was more rapid cooled than the SD 600S specimen during the TempCore process. Although two specimens had microstructure of tempered martensite in the surface region, the SD 600S specimen had ferrite-degenerated pearlite in the center region, whereas the SD 700S specimen had bainite-ferrite-degenerated pearlite in the center region. Therefore, their hardness was highest in the surface region and revealed a tendency to decrease from the surface region to the center region because tempered martensite has higher hardness than ferrite-degenerated pearlite or bainite. The SD 700S specimen revealed higher hardness in the center region than SD 600S specimen because it contained a larger amount of bainite as well as ferrite-degenerated pearlite. On the other hand, tensile test results indicated the SD 600S and SD 700S specimens revealed continuous yielding behavior because of formation of degenerated pearlite or bainite in the center region. The SD 600S specimen had a little higher tensile-to-yield ratio because the presence of ferrite and degenerated pearlite in the center region and the lower fraction of tempered martensite enhance work hardening.

Pyrolysis and Breaking Characteristics of Waste Wood for Wood-wool Board (Wood-wool board로 활용(活用)을 위한 폐목재(廢木材)의 열분해(熱分解) 및 파쇄특성(破碎特性))

  • Park, Sang-Min;Kim, Jae-Woo;Sim, Ki-Sup;Park, Sang-Sook
    • Resources Recycling
    • /
    • v.19 no.2
    • /
    • pp.19-27
    • /
    • 2010
  • The purpose of this research was to see thermal and breaking type characteristics of waste wood for construction materials using high temperature and pressure equipment. In TG/DTA graph weight of waste wood was steeply decreased at $250^{\circ}C$, it has to be treated below $250^{\circ}C$ for construction materials. In popping test the needle-leaved tree was more broken in texture than the broad-leaved tree, especially, Chamaecyparis obtusa(W-7) was the best. The optimum result was obtained at temp. $200^{\circ}C$, pressure 3MPa among the experimental condition.

Evaluation of Drainage System and Coupled Analysis of Heat Transfer and Water Flow for Ice Ring formation in Daejeon LNG Pilot Cavern (대전 LNG Pilot Cavern에서의 배수시스템 평가 및 Ice Ring 형성에 관한 냉열수리 연동해석)

  • Jeong Woo-Cheol;Lee Hee-Suk;Lee Dae-Hyuck;Kim Ho-Yeong;Choi Young-Tae
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.38-49
    • /
    • 2006
  • LNG storage in lined rock cavern demands various techniques concerned with rock mechanics, thermo-mechanics and hydrogeology in design, construction and maintenance stage. LNG pilot cavern was constructed in Daejeon in order to verify these techniques. In this paper, evaluation of drainage system and ice ring formation was studied by numerical simulation. By Modflow analysis in the viewpoint of aquifer and Seep/W analysis in the viewpoint of flow system, it was verified that the drainage system in the pilot cavern was efficiently operated. Since ice ring formation can be simulated by interactive relation between heat transfer and water flow, coupled analysis of those was performed. In this analysis, the position of ice ring was presumed and it was demonstrated that the formation is affected by velocity and direction of groundwater flow.

Studies on the Styrenic Polymers(1), Imidization of Poly(styrene-co-maleic anhydrides) and Their Thermal Properties (Styrenic Polymers연구(1), Poly(styrene-co-maleic anhydride)의 이미드화와 열적 성질)

  • Ahn, Tae-Oan;Park, Lee-Soon;Lee, Sang-Soo;Kim, Gi-Heon
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.179-187
    • /
    • 1992
  • Poly(styrene-co-maliec anhydride) was reacted with aromatic amines such as aniline, p-toluidine, and p-chloroaniline in 10% (w/w) DMF solution to convert maleic anhydride units into maleimides. Optimum reaction conditions for cyclodehydration step of imide ring formation were : (a) reaction temp. of $80^{\circ}C$ (b) mole ratios of cyclodehydration agents : anhydride units in SMA/acetic anhydride/sodium acetate/triethyl amine= 1.0/2.0/0.2/1.1. $T_g$of SMI(imide modified SMA) was increased with increasing degree of imidization, but $T_g$leveled off in the early stage of imide content. And $T_g$of SMI was increased with the following order of amines used for imidization reagents : aniline < p-toluidine < p-chloroaniline.

  • PDF

The Esterification of Acetyltyrosine by $\alpha$-Chymotrypsin in EtOH/Water Mixture (에탄올 내에서 $\alpha$-Chymotrypsin에 의한 Acetyltyrosine의 에스테르화 반응)

  • 전유진;김세권
    • KSBB Journal
    • /
    • v.9 no.3
    • /
    • pp.312-318
    • /
    • 1994
  • The esterification of Ac-Tyr-OH was carried out in one-phase system containing ethanol by ${\alpha}$-chymotrypsin. The results of the esterification reaction are as follows. Chitin-${\alpha}$-chymotrypsin complex was found to be an effective catalyst for the esterlfication of Ac-Tyr-OH in ethanol organic solvent. The optimal conditions for the esterification were chitn/${\alpha}$-chymotrypsin ratio, 20(w/w); reaction temp., $35^{\circ}C$; reaction pH, 8.0; reaction time, 24 hrs. Also, addition of chitin in water/water-miscible organic solvent was effective for the stability of the enzyme. The esterification yield, Km and Vmax under optimal conditions were 93%, 3.093mM and 1.088mM/mg/hr, respectively.

  • PDF

Processing Optimization of Seasoned Laver Pyropia yezoensis with Concentrates of Octopus Octopus vulgaris Cooking Effluent Using Response Surface Methodology (반응표면분석법을 활용한 문어(Octopus vulgaris) 조미김(Pyropia yezoensis)의 제조공정 최적화)

  • Kim, Do Youb;Kang, Sang In;Jeong, U-Cheol;Lee, Jung Seok;Heu, Min Soo;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.4
    • /
    • pp.311-320
    • /
    • 2019
  • This study aimed to optimize mixing conditions (adding amount of squid skin and sea tangle Saccharina japonica) for concentrates of octopus Octopus vulgaris cooking effluent (COCE) and roasting conditions (temperature and time) of seasoned Laver Pyropia yezoensis with concentrates of octopus cooking effluent (SL-COCE) using response surface methodology (RSM). The results of RSM program for COCE showed that the optimum independent variables ($X_1$, squid skin amount; $X_2$, sea tangle amount) based on the dependent variables ($Y_1$, odor intensity; $Y_2$, amino-N content; $Y_3$, sensory overall acceptance) for high-quality COCE were 0.53% (w/w) for $X_1$ and 0.48% (w/w) for $X_2$ for uncoded values. The results of the RSM program for SL-COCE showed that the optimum independent variables ($X_1$, roasted temp.; $X_2$, roasted time) based on the dependent variables ($Y_1$, burnt odor intensity; $Y_2$, water activity; $Y_3$, sensory overall acceptance) for high-quality SL-COCE were $344^{\circ}C$ for $X_1$ and 8 sec for $X_2$ for uncoded values. The SL-COCE prepared under optimum procedure was superior in sensory overall acceptance to commercial seasoned laver.

Assessment of Surface Boundary Conditions for Predicting Ground Temperature Distribution (지중온도 변화 예측을 위한 지표면 경계조건 검토)

  • Jang, Changkyu;Choi, Changho;Lee, Chulho;Lee, Jangguen
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.75-84
    • /
    • 2013
  • Soil freezing is a phenomenon arising due to temperature difference between atmosphere and ground, and physical properties of soils vary upon the phase change of soil void from liquid to solid (ice). A heat-transfer mechanism for this case can be explained by the conduction in soil layers and the convection on ground surface. Accordingly, the evaluation of proper thermal properties of soils and the convective condition of ground surface is an important task for understanding freezing phenomenon. To describe convection on ground surface, simplified coefficient methods can be applied to deal with various conditions, such as atmospheric temperature, surface vegetation conditions, and soil constituents. In this study, two methods such as n-factor and convection coefficient for the convective ground surface boundary were applied within a commercial numerical program (TEMP/W) for modeling soil freezing phenomenon. Furthermore, the numerical results were compared to laboratory testing results. In the series of the comparison results, the convection coefficient is more appropriate than n-factor method to model the convective boundary condition.

Improvement of Shallow Soil Using Electric Heating Equipment (전기가열장치를 이용한 표층지반개량)

  • Park, Min-Cheol;Im, Eun-Sang;Shin, Beck-Chul;Han, Heui-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.41-54
    • /
    • 2012
  • This paper is to develop the method of surface soil improvement by electric heating equipment. For this purpose, the electric heating systems were invented to apply to the in-situ soil. Iaboratory tests were done to study the behaviors of sea clays by eletric heating. In lab tests, two different heating temperatures, $70^{\circ}C$ and $110^{\circ}C$, were applied to the saturated clays to examine the relationship between evaporation and compaction. In addition, trafficability was analyzed to the heated by applying cone penetrometer to the heated clays Furthermore, in-situ tests were conducted to analyze the range of soil improvement and strength variations. The temperature changes in field were measured and they were compared with those of the commercial program (Temp/W). Also, the bearing capacities of electrically heated field were tested by PBT (plate bearing test). Several conclusions were derived from the results of the numerical analysis and tests (lab and field). The improvement ranges and strength variations of electrically heated soil depended on the heating temperature and time. If the heating temperature is more than $100^{\circ}C$ evaporating the ground water, the bearing capacity and settlement increased rapidly. The bearing capacities of in-situ soil increased more than 3 times, and heated soil emitted a lot of vapors. The soil around electric heater was sintered completely, and its range was almost 20 cm.

Evaluation on Thermal Performance of Thermosyphon by Numerical Analysis (열사이펀의 열성능 산정을 위한 수치해석 연구)

  • Jang, Changkyu;Choi, Changho;Lee, Jangguen;Lee, Chulho
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.9
    • /
    • pp.57-66
    • /
    • 2014
  • The ground in cold region consists of active and permafrost layers. The active layer at the unstable state may cause ground corrosion and uplift, when the temperature of frozen ground increases due to seasonal changes. The thermosyphon is one of the stabilization methods to maintain the ground stability in the frozen ground. The thermosyphon is a closed two-phase convection device that extracts heat from the ground and discharges it into the atmosphere. In this study, ground freezing experiment using a thermosyphon and simulated ground with the isolation material was conducted to evaluate the thermal performance of the thermosyphon. In order to consider the thermal performance of the thermosyphon, commercial numerical program (TEMP/W) was adopted. Likewise, the thermal performance of thermosyphon and thermal properties of ground were applied in the numerical model. In a series of comparisons with experiment results and numerical study, thermal performance of thermosyphon can be evaluated.