• Title/Summary/Keyword: TEM micrographs

Search Result 57, Processing Time 0.027 seconds

Influence of Allylamine Plasma Treatment Time on the Mechanical Properties of VGCF/Epoxy

  • Khuyen, Nguyen Quang;Kim, Jin-Bong;Kim, Byung-Sun;Lee, Soo
    • Advanced Composite Materials
    • /
    • v.18 no.3
    • /
    • pp.221-232
    • /
    • 2009
  • The allylamine plasma treatment is used to modify the surface properties of vapor grown carbon fibers (VGCF). It is to improve the interfacial bonding between the VGCF and epoxy matrix. The allylamine plasma process was performed by batch process in a vacuum chamber, using gas injection followed by plasma discharge for the durations of 20, 40 and 60 min. The interdependence of mechanical properties on the VGCF contents, treatment time and interfacial bonding between VGCF/ep was investigated. The interfacial bonding between VGCF and epoxy matrix was observed by scanning electron microscopy (SEM) micrographs of nanocomposites fracture surfaces. The changes in the mechanical properties of VGCF/ep, such as the tensile modulus and strength were discussed. The mechanical properties of allylamine plasma treated (AAPT) VGCF/ep were compared with those of raw VGCF/ep. The tensile strength and modulus of allyamine plasma treated VGCF40 (40 min treatment)/ep demonstrated a higher value than those of other samples. The mechanical properties were increased with the allyamine plasma treatment due to the improved adhesion at VGCF/ep interface. The modification of the carbon nanofibers surface was observed by transmission electron microscopy (TEM). SEM micrographs showed an excellent dispersion of VGCF in epoxy matrix by ultrasonic method.

Synthesis of Nanosized Titanium-Colloid by Sol-Gel Method and Characterization of Zinc Phosphating (졸-겔법에 의한 나노크기의 티탄-콜로이드 합성 및 인산염 피막 특성)

  • Lee Man Sig;Lee Sun-Do
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.1
    • /
    • pp.37-43
    • /
    • 2005
  • Nanosized titanium-colloid particles were prepared by sol-gel method. The physical properties, such as thermal stability, crystallite size and crystallinity according to synthesis condition have been investigated by TEM, XRD, SEM, TGA and DTA. In addition, Zinc phosphating has been studied in order to compare the phosphating characterization of prepared nanosized titanium-colloid particles. The major phase of all the prepared titanium-colloid particles was an amorphous structure regardless of synthesis temperature and the structure was composed of phoshate complex and titanium. The micrographs of HR- TEM showed that nanosized titanium-colloid particles possessed a spherical morphology with a narrow size distribution. The crystallite size of the titanium-colloid particles synthesized at 80℃ was 4-5 nm and increased to 8-10 nm with an increase of synthesis temperature (150℃). In addition, the coating weight increased with an increase of temperature of phosphating solution and when the concentration of titanium-colloid was 2.0 g/l, the coating weight was 1.0 g/㎡.

Observations on the structural changes of embryos of Paeonia rockii L. by low-energy ion irradiation

  • Zhang, D.M.;Cui, F.Z.;Lin, Y.B.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.37-43
    • /
    • 1998
  • The mechanism of interaction between low energy ions and biological organisms has been paid much attention recently. In order to clarify the microstructural response to low energy ion irradiation embryonic cells of Paeonia rockii L. implanted by $Fe^{1+}$ ions with the energy of 80KeV were investigated by Optical Microscopy (OM), Scanning electron Microscopy(SEM) and Transmission Electron Microscopy(TEM). At the dose of 1$\times$1015 ions/$\textrm{cm}^2$, apparent cellular damage was observed in the outer several layers of the radicle. The shape of the cells was obviously deformed from regular polygon to irregular. The cell walls became obscure. SEM micrographs showed that the surface of the radicle was etched severely. It was observed by TEM that nucleus of the implanted cell was elongated and tended to fracture. Nuclear envelope lost its integrity. The implanted $Fe^{1+}$ ions were detected by Energy Dispersive Spectroscopy (EDS). These observations showed that low energy ions could damage to the plant organisms with the thickness of about 30~50$\mu\textrm{m}$. The possible reasons for radiation damage in the biological organisms were discussed.

  • PDF

Characterization of Mechanical Properties in the Heat Affected Zones of Alloy 82/182 Dissimilar Metal Weld Joint (Alloy 82/182 이종금속 용접부 열영향부의 기계적물성치 특성 파악)

  • Kim, Jin-Weon;Kim, Jong-Sung;Lee, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.73-78
    • /
    • 2008
  • The paper presents the characteristics of mechanical properties within the heat affected zone (HAZ) of dissimilar metal weld between SA508 Gr.1a and F316 stainless steel (SS) with Alloy 82/182 filler metal. Tensile tests were performed using small-size specimens taken from the HAZ regions close to both fusion lines of weld, and the micro-structures were examined using optical microscope (OM) and transmission microscope (TEM). The results showed that significant gradients of the yield stress (YS), ultimate tensile stress (UTS), and elongations were observed within the HAZ of SA508 Gr.1a. This was attributed to the different microstructures within the HAZ. In the HAZ of F316 SS, however, the welding effect dominated the YS and elongation rather than UTS, and TEM micrographs conformed the strengthening in the HAZ of F316 SS was associated with a dislocation-induced strain hardening.

  • PDF

Synthesis of Nanosized Cu/Zn Particles in the Base Oil Phase by Hydrothermal Method and Their Abrasion Resistance (기유 내에서 수열합성법에 의한 나노크기의 구리/아연 입자 합성 및 윤활 특성)

  • Kim, Young-Seok;Lee, Ju-Dong;Lee, Man-Sig
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.1
    • /
    • pp.11-15
    • /
    • 2007
  • Stable metallic Cu/Zn nanoparticles were prepared in the base oil phase by hydrothermal method. The physical properties, such as crystal structure, crystallite size and crystallinity according to synthesis conditions have been investigated by XRD, FT-IR and TEM. In addition, 4-ball test has been performed in order to investigate the frictional wear properties of prepared nanosized Cu/Zn particles. The peaks of the X-ray diffraction pattern indicate that the particle size was very small and crystallinity of Cu/Zn particles was good. The micrographs of TEM showed that nanosized Cu/Zn particles possessed a spherical morphology with a narrow size distribution. The crystallite size of the Cu/Zn particles synthesized in base oils was 23-30 nm. It was found that the antiwear capacity increases with increasing Cu/Zn concentration. When the concentration of Cu/Zn was 5.0 wt%, the wear scar diameters was 0.38 mm.

Microstructure and Superconducting Properties of (Sm/Y)-Ba-Cu-O Superconductor by Rod-type Seed Melt Growth (Rod-type 종자결정성장법을 이용한 (Sm/Y)-Ba-Cu-O계 초전도체의 미세구조 및 초전도특성)

  • 김소정
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.336-342
    • /
    • 2003
  • (Sm/Y)$_{1.8}$B $a_{2.4}$C $u_{3.4}$$O_{7-x}$ [(Sm/Y)1.8] high $T_{c}$ superconductors were directionally grown by Rod-type Seed Melt Growth(RSMG) process in air atmosphere. The sintered polycrystalline N $d_{1.8}$B $a_{2.4}$C $u_{3.4}$$O_{7-x}$(Nd1.8) of rod-type seed crystal grown by extrusion mold process were used for achieving the ab-plane alignment haying large grains perpendicular to the center of (Sm/Y)1.8 samples. The observations using TEM micrographs of the melt-textured (Sm/Y)1.8 samples revealed that the nonsuperconducting (Sm/Y)211 inclusions are uniformly distributed in the superconducting (Sm/Y)123 matrix. The microstructure and superconducting properties were investigated by XRD, TEM and SQUID magnetometer. The RSMG (Sm/Y)1.8 samples showed an onset $T_{c}$ $\geq$ 90 K and sharp superconducting transition.nsition.ion.nsition.

Characterization of Mechanical Properties in the Heat Affected Zones of Alloy 82/182 Dissimilar Metal Weld Joint (Alloy 82/182 이종금속 용접부 열영향부의 계계적물성치 파악)

  • Kim, Jin-Weon;Kim, Jong-Sung;Lee, Kyoung-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.28-33
    • /
    • 2008
  • This paper presents the characteristics of mechanical properties within the heat affected zones(HAZs) of dissimilar metal weld joint between SA508 Gr.1a and F3l6 stainless steel(SS) with Alloy 82/182 filler metal. Tensile tests were performed using small-size specimens taken from the heat affected regions close to both fusion lines of weld, and the micro-structures were examined using optical microscope(OM) and transmission microscope(TEM). The results showed that significant gradients of the yield stress(YS), ultimate tensile stress(UTS), and elongations were observed within the HAZ of SA508 Gr.1a. This was attributed to the different microstructures within the HAZ developed during the welding process. In the HAZ of F316 SS, however, the welding effect dominated the YS and elongation rather than UTS. TEM micrographs demonstrated these characteristics of the HAZ of F316 SS was associated with a dislocation-induced strain hardening.

Characterization and Electrical Properties in (YNS)BCO Oxides by Rod-type Seeded Melt Growth Process

  • Kim, So-Jung;Park, Jong-Kuk;Lee, Sang-Gyo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.243-243
    • /
    • 2007
  • We have studied the electrical properties and microstructure of $(Y_{0.5}Nd_{0.25}Sm_{0.25})Ba_2Cu_3O_y[(YNS)-123]$ Oxides by rod-type seeded melt growth process(RSMG) in air atmosphere. Rod-type $NdBa_2Cu_3O_y${Nd-123) seed crystals made a extrusion process method, were used for achieving the ab-plane alignment having large grains perpendicular to the center of (YNS)-123 samples. The observations using SEM and TEM micrographs of the melt-textured (YNS)-123 samples revealed that the nonsuperconducting $(Y_{0.5}Nd_{0.25}Sm_{0.25})Ba_2Cu_3O_y[(YNS)-211]$ inclusions are uniformly distributed in the superconducting matrix. The microstructure and electrical properties were investigated by XRD, SEM, TEM and DC SQUID magnetometer. The sample showed a sharp superconducting transition at 90 K. The magnetization values of the (YNS)-123 sample exhibited the enhanced electrical properties, compared with $YBa_2Cu_3O_y$(Y-123) sample.

  • PDF

Joint properties and Interface Analysis of Friction Stir Welded Dissimilar Materials between Austenite Stainless Steel and 6013 Al Alloy (마찰교반접합한 오스테나이트계 스테인리스강과 6013알루미늄 합금 이종 접합부의 접합 특성 및 계면 성질)

  • Lee, Won-Bae;Biallas, gehard;Schmuecker, Martin;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.23 no.5
    • /
    • pp.61-68
    • /
    • 2005
  • Dissimilar joining of Al 6013-T4 alloys and austenite stainless steel was carried out using friction stir welding technique. Microstructures near the weld zone and mechanical properties of the joint have been investigated. Microstructures in the stainless steel side were composed of the heat affected zone and the plastically deformed zone, while those in the Al alloy side were composed of the recrystallized zone including stainless steel particles, the thermo-mechanically affected zone and the heat affected zone. TEM micrographs revealed that the interface region was composed of the mixed layers of elongated stainless steel and ultra-fine grained Al alloy with lamella structure and intermetallic compound layer. Thickness of the intermetallic layer was approximately 300nm and was identified as the A14Fe with hexagonal close packed structure. Mechanical properties, such as tensile and fatigue strengths were lower than those of 6013 Al alloy base metal, because tool inserting location was deviated to Al alloy from the butt line, which resulted in the lack of the stirring.

Characteristic Change of PVDF-$SiO_2$ Composite Nanofibers with Different Thermal Treatment Temperature (열처리 온도에 따른 PVDF-$SiO_2$ 복합나노섬유의 특성 변화)

  • Kim, Young-Jin
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.605-609
    • /
    • 2011
  • Composite nanofibers were prepared by electrospinning and thermal treatment from poly (vinylidene fluoride) (PVDF)-$SiO_2$ blend solution. The nanofibers were stacked on layers to produce fully interconnected pores. TEM micrographs and EDX spectra confirmed the presence of $SiO_2$ in the composite nanofibers. The porosity of nanofibers was effectively enhanced by the introduction of electrospinning technique. ATR-FTIR and XRD results revealed that PVDF in the composite nanofibers exhibited the mixture crystal structure of ${\alpha}$-phase and ${\beta}$-phase. The crystal structure of ${\alpha}$-phase and crystallinity increased by the thermal treatment. In addition, the mechanical properties, thermal stability and hydrophobicity were markedly amplified by the thermal treatment.