• Title/Summary/Keyword: TEM analysis

Search Result 963, Processing Time 0.024 seconds

A Study on the Low Temperature Epitaxial Growth of $CoSi_2$ Layer by Multitarget Bias cosputter Deposition and Phase Sequence (Multitarget Bias Cosputter증착에 의한 $CoSi_2$층의 저온정합성장 및 상전이에 관한 연구)

  • Park, Sang-Uk;Choe, Jeong-Dong;Gwak, Jun-Seop;Ji, Eung-Jun;Baek, Hong-Gu
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.9-23
    • /
    • 1994
  • Epitaxial $CoSi_2$ layer has been grown on NaCl(100) substrate at low deposition temperature($200^{\circ}C$) by multitarget bias cosputter deposition(MBCD). The phase sequence and crystallinity of deposited silicide as a function of deposition temperature and substrate bias voltage were studied by X-ray diffraction(XRD) and transmission electron microscopy(TEM) analysis. Crystalline Si was grown at $200^{\circ}C$ by metal induced crystallization(M1C) and self bias effect. In addition to, the MIC was analyzed both theoretically and experimentally. The observed phase sequence was $Co_2Si \to CoSi \to Cosi_2$ and was in good agreement with that predicted by effective heat of formation rule. The phase sequence, the CoSi(l11) preferred orientation, and the crystallinity had stronger dependence on the substrate bias voltage than the deposition temperature due to the collisional cascade mixing, the in-situ cleaning, and the increase in the number of nucleation sites by ion bombardment of growing surface. Grain growth induced by ion bombardment was observed with increasing substrate bias voltage at $200^{\circ}C$ and was interpreted with ion bombardment dissociation model. The parameters of $E_{Ar}\;and \alpha(V_s)$ were chosen to properly quantify the ion bombardment effect on the variation in crystallinty at $200^{\circ}C$ with increasing substrate bias voltage using Langmuir probe.

  • PDF

A Study on the Formation fo Epitaxial $CoSi_2$ Thin Film using Co/Ti Bilayer (Co/Ti이중박막을 이용한 $CoSi_2$에피박막형성에 관한 연구)

  • Kim, Jong-Ryeol;Bae, Gyu-Sik;Park, Yun-Baek;Jo, Yun-Seong
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.81-89
    • /
    • 1994
  • Ti film of lOnm thickness and Co film of 18nm thickness were sequentially e-heam evaporated onto Si (100) substrates. Metal deposited samples were rapidly thermal-annt.aled(KTA) in thr N1 en vironment a t $900^{\circ}C$ for 20 sec. to induce the reversal of metal bilayer, so that $CoSi_{2}$ thin films could be formed. The sheet resistance measured by the 4-point probe was 3.9 $\Omega /\square$This valur was maintained with increase in annealing time upto 150 seconds, showing high thermal stab~lity. Thc XRII spectra idrn tified the silicide film formed on the Si substrate as a $CoSi_{2}$ epitaxial layer. The SKM microgr;iphs showed smooth surface, and the cross-sectional TKM pictures revealed that the layer formed on the Si substrate were composed of two Co-Ti-Si alloy layers and 70nm thick $CoSi_{2}$ epl-layer. The AES analysis indicated that the native oxide on Si subs~rate was removed by TI ar the beginning of the RTA, and Ihcn that Co diffused to clean surface of Si substrate so that epitaxial $CoSi_{2}$ film could bt, formed. In thc rasp of KTA at $700^{\circ}C$. 20sec. followed by $900^{\circ}C$, 20sec., the thin film showed lower sheet resistance, but rough surface and interface owing to $CoSi_{2}$ crystal growth. The application scheme of this $CoSi_{2}$ epilayer to VLSI devices and the thermodynarnic/kinetic mechan~sms of the $CoSi_{2}$ epi-layer formation through the reversal of Co/Ti bdayer were discussed.

  • PDF

Gene Silencing of β-catenin by RNAi Inhibits Proliferation of Human Esophageal Cancer Cells by Inducing G0/G1 Cell Cycle Arrest

  • Wang, Jin-Sheng;Ji, Ai-Fang;Wan, Hong-Jun;Lu, Ya-Li;Yang, Jian-Zhou;Ma, Li-Li;Wang, Yong-Jin;Wei, Wu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2527-2532
    • /
    • 2012
  • Objectives: The aim of the present study was to explore mechanisms underlying the effects of down-regulating ${\beta}$-catenin expression on esophageal carcinoma (EC) cells. Methods: Cell cycle distribution and apoptosis were determined using flow cytometry and annexin V apoptosis assay, respectively. Transmission electron microscopy (TEM) was used to examine changes in ultrastructure, while expression of cyclin D1 protein and mRNA was detected by western blot and real-time PCR. Proliferating cell nuclear antigen (PCNA) and extracellular signal-regulated kinase (ERK) 1-2 were evaluated by Western blot analysis. PCNA labeling index (LI) was determined by immunocytochemistry. Results: Compared with pGen-3-con transfected and Eca-109 cells, the percentage of G0/G1-phase pGen-3-CTNNB1 transfected cells was obviously increased (P<0.05), with no significant difference among the three groups with regard to apoptosis (P>0.05). pGen-3-CTNNB1 transfected cells exhibited obvious decrease in cyclin D1 mRNA and protein expression (P<0.05) and the ultrastructure of Eca-109 cells underwent a significant change after being transfected with pGen-3-CTNNB1, suggesting that down-regulating ${\beta}$-catenin expression can promote the differentiation and maturation. The expression of PCNA and the ERKI/2 phosphorylation state were also down-regulated in pGen-3-CTNNB1 transfected cells (P<0.05). At the same time, the PCNA labeling index was decreased accordingly (P<0.05). Conclusion: Inhibition of EC Eca-109 cellproliferation by down-regulating ${\beta}$-catenin expression could improve cell ultrastructure by mediating blockade in G0/G1 through inhibiting cyclin D1, PCNA and the MAPK pathway (p-ERK1/2).

Stimulative Effects of Hominis Placental Pharmacopuncture Solution Combined with Zinc-oxide Nanoparticles on RAW 264.7 Cells - ZnO HPPS more easily stimulates RAW 264.7 cells -

  • Hong, Tae-Keun;Kim, Jee-Hye;Woo, Ju-Youn;Ha, Ki-Tae;Joo, Myung-Soo;Hahn, Yoon-Bong;Jeong, Han-Sol
    • Journal of Pharmacopuncture
    • /
    • v.15 no.3
    • /
    • pp.13-18
    • /
    • 2012
  • Objectives: The purpose of this study is to examine whether Hominis Placental pharmacopuncture solution (HPPS) combined with zinc-oxide nanoparticles (ZnO NP) activates RAW 264.7 cells. Methods: We soaked ZnO nanoparticles in the Hominis Placenta pharmacopuncture solution, thereby making a combined form (ZnO NP HPPS). The effect of ZnO NP HPPS on the intracellular reactive oxygen species (ROS) production was measured by 2', 7'-dichlorofluorescin diacetate (DCFH-DA) assay. The effect of ZnO NP HPPS on NF-${\kappa}B$ was measured by using a luciferase assay. The effect of ZnO NP HPPS on the cytokine expression was assessed by semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR). The cellular uptake of ZnO NP HPPS was measured by using a flow cytometric analysis, and cellular structural alterations were analyzed by using transmission electron microscopy (TEM). Results: Neither the HPPS nor the ZnO NPs induced intracellular ROS production in RAW 264.7 cells. Neither of the materials activated NF-${\kappa}B$ or it's dependent genes, such as TNF-${\alpha}$, IL-1, and MCP-1. However, ZnO NP HPPS, the combined form of ZnO NPs and HPPS, did induce the intracellular ROS production, as well as prominently activating NF-${\kappa}B$ and it's dependent genes. Also, compared to ZnO NPs, it effectively increa-sed the uptake by RAW 264.7 cells. In addition, cellular structural alterations were observed in groups treated with ZnO NP HPPS. Conclusions: Neither ZnO NP nor HPPS activated RAW 264.7 cells, which is likely due to a low cellular uptake. The ZnO NP HPPS, however, significantly activated NF-${\kappa}B$ and up-regulated its dependent genes such as TNF-${\alpha}$, IL-1, and MCP-1. ZnO NP HPPS was also more easily taken into the RAW 264.7 cells than either ZnO NP or HPPS.

Study on Conversion of Carbon Dioxide to Methyl Alcohol over Ceramic Monolith Supported CuO and ZnO Catalysts (세라믹 모노리스에 담지된 CuO와 ZnO계 촉매에 의한 이산화탄소의 메탄올로의 전환에 관한 연구)

  • Park, Chul-Min;Ahn, Won-Ju;Jo, Woong-Kyu;Song, Jin-Hun;Kim, Ki-Joong;Jeong, Woon-Jo;Sohn, Bo-Kyun;Ahn, Byeong Kwon;Chung, Min-Chul;Park, Kwon-Pil;Ahn, Ho-Geun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.97-104
    • /
    • 2013
  • Methyl alcohol is one of the basic intermediates in the chemical industry and is also being used as a fuel additive and as a clean burning fuel. In this study, conversion of carbon dioxide to methyl alcohol was investigated using catalytic chemical methods. Ceramic monoliths (M) with $400cell/in^2$ were used as catalyst supports. Monolith-supported CuO-ZnO catalysts were prepared by wash-coat method. The prepared catalysts were characterized by using ICP analysis, TEM images and XRD patterns. The catalytic activity for carbon dioxide hydrogenation to methyl alcohol was investigated using a flow-type reactor under various reaction temperature, pressure and contact time. In the preparation of monolith-supported CuO-ZnO catalysts by wash-coat method, proper concentration of precursors solution was 25.7% (w/v). The mixed crystal of CuO and ZnO was well supported on monolith. And it was known that more CuO component may be supported than ZnO component. Conversion of carbon dioxide was increased with increasing reaction temperature, but methyl alcohol selectivity was decreased. Optimum reaction temperature was about $250^{\circ}C$ under 20 atm because of the reverse water gas shift reaction. Maximum yield of methyl alcohol over CuO-ZnO/M catalyst was 5.1 mol% at $250^{\circ}C$ and 20 atm.

Possibility of Involvement of Porphyromonas gingivalis in Coronary Heart Disease

  • Lee, Jin-Yong;Park, Byung-Lae;Yun, Hyun-Kyung;Park, Eun-Ah;Shin, Eun-Ah;Jue, Seong-Suk;Shin, Je-Won
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.3
    • /
    • pp.203-214
    • /
    • 2000
  • Porphyromonas gingivalis has been implicated in periodontal diseases. Accumulating evidence suggests that cardiovascular disease is the most prevalent medical problem in patients with periodontal diseases. In order to check the possibility that P. gingivalis is involved in coronary heart disease, the present study was performed to observe P. gingivalis adherence and invasion of human coronary artery endothelial cells (HCAEC) and production of cytokines and growth factors by HCAEC upon P. gingivalis infection. $^3H$-labeled P. gingivalis 381 was incubated with HCAEC for 90 min. The radioactivity of the washed HCAEC was a measure of the absorbed (adhering and invading) P. gingivalis. The absorption radioactivity of the HCAEC infected by P. gingivalis was determined to be 59.58% of the input bacterial cells. In contrast, the absorption radioactivity of the cells infected by S. gordonii Challis which was employed as a control was negligible (0.59%). DPG3, a P. gingivalis mutant defective of fimbriae, appeared to be impaired to some extent in capability of adherence/invasion as compared to that of the parental strain 381, showing 43.04% of the absorption radioactivity. The absorption radioactivity of the HCAEC infected by P. gingivalis 381 in the presence of excessive fimbriae at the concentrations of $50\;{\mu}g$ and $100\;{\mu}g/ml$ was 57.27 and 45.44%, respectively. Invasion of HCAEC by P. gingivalis 381 was observed by an antibiotic (metronidazole) protection assay and transmission electron microscopy (TEM). In the antibiotic protection assay, invasion by the bacterium was measured to be 0.73, 1.09, and 1.51% of the input bacterial cells after incubation for 30, 60, and 90 min, respectively. Invasion by DPG3 was shown to be 0.16% after 90-min incubation. In comparison of invasion efficiency at 90 min of the incubation, the invasion efficiency of DPG3 was 0.37% while that of its parental strain 381 was 2.54%. The immunoblot analysis revealed fimbriae of P. gingivalis did not interact with the surface of HCAEC. These results suggest that fimbriae are not the major contribution to the adherence of P. gingivalis to HCAEC but may be important in the invasion of HCAEC by the bacterium. The presence of cytochalasin D ($1\;{\mu}g/ml$) and staurosporine ($1\;{\mu}M$) reduced the invasion of HCAEC by P. gingivalis 381 by 78.86 and 53.76%, respectively, indicating that cytoskeletal rearrangement and protein kinase of HCAEC are essential for the invasion. Infection of P. gingivalis induced HCAEC to increase the production of TNF-${\alpha}$. by 60.6%. At 90 min of the incubation, the HCAEC infected with P. gingivalis cells was apparently atypical in the shape, showing loss of the nuclear membrane and subcellular organelles. The overall results suggest that P. gingivalis may cause coronary heart disease by adhering to and invading endothelial cells, and subsequently damaging the cells.

  • PDF

Anti-proliferative Activities of Metallic Nanoparticles in an in Vitro Breast Cancer Model

  • Loutfy, Samah A;Al-Ansary, Nadia A;Abdel-Ghani, Nour T;Hamed, Ahmed R;Mohamed, Mona B;Craik, James D;Eldin, Taher A. Salah;Abdellah, Ahmed M;Hussein, Yassmein;Hasanin, MTM;Elbehairi, Serag Eldin I
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.6039-6046
    • /
    • 2015
  • Aims: To investigate effect of metallic nanoparticles, silver (AgNPs) and gold nanoparticles (AuNPs) as antitumor treatment in vitro against human breast cancer cells (MCF-7) and their associated mechanisms. This could provide new class of engineered nanoparticles with desired physicochemical properties and may present newer approaches for therapeutic modalities to breast cancer in women. Materials and Methods: A human breast cancer cell line (MCF-7) was used as a model of cells. Metallic nanoparticles were characterized using UV-visible spectra and transmission electron microscopy (TEM). Cytotoxic effects of metallic nanoparticles on MCF-7 cells were followed by colorimetric SRB cell viability assays, microscopy, and cellular uptake. Nature of cell death was further investigated by DNA analysis and flow cytometry. Results: Treatment of MCF-7 with different concentrations of 5-10nm diameter of AgNPs inhibited cell viability in a dose-dependent manner, with IC50 value of $6.28{\mu}M$, whereas treatment of MCF-7 with different concentrations of 13-15nm diameter of AuNPs inhibited cell viability in a dose-dependent manner, with IC50 value of $14.48{\mu}M$. Treatment of cells with a IC50 concentration of AgNPs generated progressive accumulation of cells in the S phase of the cell cycle and prevented entry into the M phase. The treatment of cells with IC50 concentrations of AuNPs similarly generated progressive accumulation of cells in sub-G1 and S phase, and inhibited the entrance of cells into the M phase of the cell cycle. DNA fragmentation, as demonstrated by electrophoresis, indicated induction of apoptosis. Conclusions: Our engineered silver nanoparticles effectively inhibit the proliferation of human breast carcinoma cell line MCF-7 in vitro at high concentration ($1000{\mu}M$) through apoptotic mechanisms, and may be a beneficial agent against human carcinoma but further detailed study is still needed.

Anti-oxidative and Anti-inflammatory Constituents from the Extracts of Hydrangea macrophylla Flowers (수국 꽃 추출물 유래 항산화 및 항염 활성 성분)

  • Jo, Yeon Jeong;Lee, Yong bum;Hyun, Ji Seon;Kim, Chang Yun;Lee, Nam Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1356-1365
    • /
    • 2020
  • In this study, the extracts of Hydrangea macrophylla (H. macrophylla) flowers were investigated for the anti-oxidative and anti-inflammatory activities, and their active constituents were identified. The anti-oxidative effects were tested by DPPH and ABTS+ assays. To evaluate anti-inflammatory activities, LPS-induced RAW264.7 cells were examined. Among the extracts, the ethyl acetate fraction showed potent radical scavenging activities and inhibition of nitric oxide (NO) production. Chromatographic purification of the extract led to isolation of the compounds; hydrangenol (1), prunin (2) and astragalin (3). The chemical structures of the constituents were elucidated based on spectroscopic data including NMR spectra, as well as comparison of the data in the literature values. Quantitative analysis by high pressure liquid chromatography (HPLC) determined hydrangenol (1) as the major constituent. Isolated compounds 1-3 decreased the NO level without causing cell toxicities. Based on these results, it was suggested that the extract from H. macrophylla flowers could be potentially applicable as an anti-oxidative and/or anti-inflammatory ingredients.

Ultrafine Particle Events in the Ambient Atmosphere in Korea

  • Maskey, Shila;Kim, Jae-Seok;Cho, Hee-Joo;Park, Kihong
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.4
    • /
    • pp.288-303
    • /
    • 2012
  • In this study, real time measurements of particle number size distribution in urban Gwangju, coastal Taean, and industrial Yeosu in Korea were conducted in 2008 to understand the occurrence of ultrafine particle (UFP) (<100 nm) events, the variation of its concentration among different sampling sites, and UFP formation pathways. Also, to investigate seasonal and long-term variation of the UFP number concentration, data were collected for the period of 5 years (2007, 2008, 2010, 2011, and 2012) in urban Gwangju. Photochemical and combustion events were found to be responsible for the formation of UFP in the urban Gwangju site, whereas only photochemical event led to the formation of UFP in the coastal Taean site. The highest UFP concentration was found in industrial Yeosu (the average UFP number fractions were 79, 59 and 58% in Yeosu, Gwangju, and Taean, respectively), suggesting that high amount of gas pollutants (e.g., $NO_2$, $SO_2$, and volatile organic carbon (VOC)) emitted from industries and their photochemical reaction contributed for the elevated UFP concentration in the industrial Yeosu site. The UFP fraction also showed a seasonal variation with the peak value in spring (61.5, 54.5, 50.5, and 40.7% in spring, fall, summer, and winter, respectively) at urban Gwangju. Annual average UFP number concentrations in urban Gwangju were $5.53{\times}10^3\;cm^{-3}$, $4.68{\times}10^3\;cm^{-3}$, $5.32{\times}10^3\;cm^{-3}$, $3.99{\times}10^3\;cm^{-3}$, and $2.16{\times}10^3\;cm^{-3}$ in the year 2007, 2008, 2010, 2011, and 2012, respectively. Comparison of the annual average UFP number concentration with urban sites in other countries showed that the UFP concentrations of the Korean sites were lower than those in other urban cities, probably due to lower source strength in the current site. TEM/EDS analysis for the size-selected UFPs showed that the UFPs were classified into various types having different chemical species. Carbonaceous particles were observed in both combustion (soot and organics) and photochemical events (sulfate and organics). In the photochemical event, an internal mixture of organic species and ammonium sulfate/bisulfate was identified. Also, internal mixtures of aged Na-rich and organic species, aged Ca-rich particles, and doughnut shaped K-containing particles with elemental composition of a strong C with minor O, S, and K-likely to be originated from biomass burning nearby agricultural area, were observed. In addition, fly ash particles were also observed in the combustion event, not in the photochemical event.

Processing of Functional Enzyme-hydrolyzed Sauce from Anchovy Sauce and Soy Sauce Processing By-products 1. Optimization of Hydrolysis Conditions by Response Surface Methodology (멸치액젓 및 간장 가공부산물을 이용한 기능성 효소분해간장의 제조 1. 반응표면분석법에 의한 가수분해물 제조조건의 최적화)

  • Kim, Hun;Lee, Jung-Suck;Cha, Yong-Jun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.4
    • /
    • pp.653-657
    • /
    • 2002
  • The hydrolysis conditions (enzym $e_strate ratio, time and temperature) of the mixture of anchovy sauce residue (ASR) and soy sauce residue (SSR) after fermentation by Flavourzyme 500M $G^{TM}$ were optimized using response surface methodology (RSM) for pretreatment of processing functional enzyme-hydrolyzed sauce. A model equation obtained from RSM was hydrolysis ratio (%) = 28.157+1.929enzym $e_strate ratio+1.818time+2.038temperature-1.093temperatur $e^2$, whose stationary point showed saddle point. From the ridge analysis of the saddle point, the conditions producing the highest hydrolysis ratio was determined as follows: 0.49% enzym $e_strate ratio; 3.55hr hydrolysis time; 62.5$^{\circ}C$ hydrolysis temperature. Adding of SSR to the mixture of water and ASR improved sensory qualities of mixture, so it seemed that SSR has masking effects on off-flavor and taste of ASR.R.of ASR.R.