• Title/Summary/Keyword: TEM Journal

Search Result 3,011, Processing Time 0.034 seconds

Crystal Structure and Electrical Transport Characteristics of ${La_{1-x}}{Sr_x}{MnO_{3-{\delta}}}$(0.19$\leq$x$\leq$0.31) Thin Films (${La_{1-x}}{Sr_x}{MnO_{3-{\delta}}}$(0.19$\leq$x$\leq$0.31) 박막의 결정구조 및 전기전도 특성)

  • Heo, H.;Lim, S.J.;Cho, N-H.
    • Korean Journal of Materials Research
    • /
    • v.10 no.6
    • /
    • pp.437-444
    • /
    • 2000
  • We investigated the effect of substrate temperature, chemical composition and post-deposition heat-treatment on the crystal structure and electrical transport of $La_{1-x}Sr_xMnO_{3-{\delta}}$(0.19${\leq}x{\leq}$0.31) thin films. As-prepared $La_{1-x}Sr_xMnO_{3-{\delta}}$ films grown at $500^{\circ}C$ by sputter techniques were found to have the pseudo-tetragonal system(a/c=0.97) and a highly preferential <001> orientation. The films were changed to be of the cubic system by post-deposition annealing at around $900^{\circ}C$. A main target of $La_{0.67}Sr_{0.33}MnO_3$ as well as auxliary targets of $La_{0.3}Sr_{0.7}MnO_3$ ceramics were co-sputtered to control the chemical composition of the film. The Sr content(x) of the film ranged from 0.19 to 0.31, depending on the number of the auxiliary target. When x increased from 0.19 to 0.31, the electrical resistivity of the film decreased and the transition temperature between metal and semiconductor shifted to higher temperature. With a magnetic field of 0.18 T, the magneto-resistance ratio (MR(%) = (${\rho}_o-{\rho}_H/{\rho}_H$) of the $La_{0.69}Sr_{0.31}MnO_3$ thin film was about 390%.

  • PDF

PHOTOCATALYTIC ANTIEUNGAL ACTIVITY AGAINST CANDIDA ALBICANS BY $TiO_2$ COATED ACRYLIC RESIN DENTURE BASE

  • Yang Ji-Yeon;Kim Hee-Jung;Chung Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.3
    • /
    • pp.284-294
    • /
    • 2006
  • Statement of problem. Proliferation of Candida albicans is primarily within the plaque on the fitting surface of the denture rather than on the inflamed mucosa. Consequently, the treatment of the denture is equally important as treatment of the tissue. Cleansing and disinfection should be efficiently carried-out as the organisms can penetrate into the voids of the acrylic resin and grow in them, from which they can continue to infect and reinfect bearing tissues. Purpose. The purpose of this study was to evaluate the applicability of photocatalytic reaction to eliminate Candida albicans from acrylic resin denture base, and to investigate the anti-fungal effect with various UVA illumination time. Materials and Methods. The specimens were cured by the conventional method following the manufacturer's instruction using thermal polymerized denture base resin (Vertex RS: Dentimex, Netherlands). $TiO_2$ photocatalyst sol(LT), which is able to be coated at normal temperature, was made from the Ti-alkoxide progenitor. The XRD patterns, TEM images and nitrogen absorption ability of the $TiO_2$ photocatalyst sol(LT) were compared with the commercial $TiO_2$ photocatalyst P-25. The experimental specimens were coated with the mixture of the $TiO_2$ photocatalyst sol(LT) and binder material (silane) using dip-coater, and uncoated resin plates were used as the control group. Crystallinity of $TiO_2$ of the specimen was tested by the XRD. Size, shape and chemical compositions were also analyzed using the FE-SEM/ EDS. The angle and methylene blue degradation efsciency were measured for evaluating the photocatalytic activity of the $TiO_2$ film. Finally, the antifungal activity of the specimen was tested. Candida albicans KCTC 7629(1 ml, initial concentration $10^5$ cells/ ml) were applied to the experiment and control group specimens and subsequently two UVA light source with 10W, 353 nm peak emission were illuminated to the specimens from 15cm above. The extracted $2{\mu}l$ of sample was plated on nutrient agar plate ($Bacto^{TM}$ Brain Heart Infusion; BD, USA) with 10 minute intervals for 120 minute, respectively. It was incubated for 24 hours at $37^{\circ}C$ and the colony forming units (CFUs) were then counted. Results. Compared the characteristics of LT photocatalyst with commercial P-25 photocatalyst, LT were shown higher activity than P-25. The LT coated experimental specimen surface had anatase crystal form, less than 20 nm of particle size and wide specific surface area. To evaluate the photocatalytic activity of specimens, methylene blue degradation reaction were used and about 5% of degradation rate were measured after 2 hours. The average contact angle was less than $20^{\circ}$ indicating that the LT photocatalyst had hydrophilicity. In the antifungal activity test for Candida albicans, 0% survival rate were measured within 30 minute after irradiation of UVA light. Conclusion. From the results reported above, it is concluded that the UVA-LT photocatalytic reaction have an antifungal effect on the denture surface Candida albicans, and so that could be applicable to the clinical use as a cleaning method.

The Magnetic Properties of $Fe_{87}Zr_{7}B_{5}Ag_{1}$(at.%) Amorphous Alloy ($Fe_{87}Zr_{7}B_{5}Ag_{1}$ 비정질합금의 연자기 특성)

  • 김병걸;송재성;김현식;오영우
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.8-14
    • /
    • 1995
  • The magnetic properties of an $Fe_{87}Zr_{7}B_{5}Ag_{1}$(at.%) amorphous alloy have been investigated as a function of annealing temperatures to clarify its application potential as a core material for high-frequency use by adding a small amount of insoluble element of Ag. A new excellent soft magnetic material was developed. The amorphous alloy produced by relatively low temperature annealing at $T_{a}=400^{\circ}C$ exhibited very high initial permeability$(\mu_{i})$ of 288,000 at 1kHz and 2mOe, very low coercivity$(H_{c})$ of 15mOe and low core loss$(W_{c})$ of 50W/kg at 100kHz and 1,000G which is comparable with Co-based amorphous alloys, respectively. It is notable that the values obtained in the present study are the best magnetic properties among various kinds of Fe-based soft amorphous materials reported up to date. The reasons for the achievement of good soft magnetic properties are presumably due to the homogeneous formation of very fine $\alpha$-Fe clusters with the size of 2~3nm in an amorphous matrix, which can be deduced from the increase of resistivity and the TEM observation. The very fine $\alpha$-Fe clusters embedded in an amorphous matrix had a great influence on reduction of magnetostriction and refinement of magnetic domain.

  • PDF

Effect of Ti-Doped Al2O3 Coating Thickness and Annealed Condition on Microstructure and Electrochemical Properties of LiCoO2 Thin-Film Cathode (Ti 첨가 Al2O3 코팅층의 두께와 열처리 조건이 LiCoO2 양극 박막의 미세구조와 전기화학적 특성에 미치는 영향)

  • Choi, Ji-Ae;Lee, Seong-Rae;Cho, Won-Il;Cho, Byung-Won
    • Korean Journal of Materials Research
    • /
    • v.17 no.8
    • /
    • pp.447-451
    • /
    • 2007
  • We investigated the dependence of the various annealing conditions and thickness ($6\sim45nm$) of the Ti-doped $Al_2O_3$ coating on the electrochemical properties and the capacity fading of Ti-doped $Al_2O_3$ coated $LiCoO_2$ films. The Ti-doped-$Al_2O_3$-coating layer and the cathode films were deposited on $Al_2O_3$ plate substrates by RF-magnetron sputter. Microstructural and electrochemical properties of Ti-doped-$Al_2O_3$-coated $LiCoO_2$ films were investigated by transmission electron microscopy (TEM) and a dc four-point probe method, respectively. The cycling performance of Ti-doped $Al_2O_3$ coated $LiCoO_2$ film was improved at higher cut-off voltage. But it has different electrochemical properties with various annealing conditions. They were related on the microstructure, surface morphology and the interface condition. Suppression of Li-ion migration is dominant at the coating thickness >24.nm during charge/discharge processes. It is due to the electrochemically passive nature of the Ti-doped $Al_2O_3$ films. The sample be made up of Ti-doped $Al_2O_3$ coated on annealed $LiCoO_2$ film with additional annealing at $400^{\circ}C$ had good adhesion between coating layer and cathode films. This sample showed the best capacity retention of $\sim92%$ with a charge cut off of 4.5 V after 50 cycles. The Ti-doped $Al_2O_3$ film was an amorphous phase and it has a higher electrical conductivity than that of the $Al_2O_3$ film. Therefore, the Ti-doped $Al_2O_3$ coated improved the cycle performance and the capacity retention at high voltage (4.5 V) of $LiCoO_2$ films.

Age-Hardening Behavior of SiCp Reinforced 6061 Aluminum Alloy Composites (SiCp/6061Al합금복합재료의 시효거동)

  • An, Haeng-Geun;Yu, Jeong-Hui;Kim, Seok-Won;U, Gi-Do
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.793-798
    • /
    • 2000
  • The age-hardening behavior of unreinforced 6061 Al alloy and SiCp/6061 Al alloy composites reinforced with different size of SiC particle (average diameter ; 0.7$\mu\textrm{m}$ and 7.0$\mu\textrm{m}$) was investigated by hardness measurement, calorimetric technique and transmission electron microscopy. At 17$0^{\circ}C$ isothermal aging treatment, the peak aging time of 0.7$\mu\textrm{m}$SiCp/6061Al alloy composite and 7.0$\mu\textrm{m}$SiCp/6061Al alloy composite is shorter than that of unreinforced 6061Al alloy, and the aging of 7.0$\mu\textrm{m}$SiCp/6061Al alloy composite is accelerated more than that of 0.7$\mu\textrm{m}$SiCp/6061Al alloy composite. This acceleration is due to the increase of dislocation density by the compositeness with SiCp and the SiC particle size. In the peak aged condition, the major strengthening phase of these materials is intermediate $\beta$ phase(Mg$_2$Si), and the activation energy for the formation of $\beta$ phase is considerably decreased by the compositeness with SiCp and the increasing of SiC Particle site.

  • PDF

Preparation of Al-doped NiO via Solvothermal Synthesis and its Crystal Structural and Electrical Properties (용매열 합성법을 통하여 알루미늄을 도핑한 니켈옥사이드의 제조와 그 결정구조적, 전기적 특성)

  • Hong, Sun-Ki;Ji, Mi-Jung;Lee, Min-Jin;Jung, Sung-Hun;Seol, Kwang-Hee;Choi, Byung-Hyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.631-635
    • /
    • 2012
  • Nickel oxide was doped with a wide range of concentrations (mol%) of Aluminum (Al) by solvothermal synthesis; single-phased nano powder of nickel oxide was generated after calcination at$900^{\circ}C$. When the concentration of Al dopant was increased, the reduced intensity was confirmed through XRD analysis. Lattice parameters of the synthesized NiO powder were decreased after treatment of the dopant; parameters were increased when the concentration of Al was over the doping limit (5 mol% Al). The binding energy of $Ni^{2+}$ was chemically shifted to $Ni^{3+}$ by doping $Al^{3+}$ ion, as confirmed by the XPS analysis. The tilted structure of the synthesized NiO with 5 mol% Al dopant and the polycrystalline structure of the $Ni_{0.75}Al_{0.25}O$ were observed by HR-TEM analysis. The electrical conductivity of the newly synthesized NiO was highly improved by Al doping in the conductivity test. The electrical conductivity values of the commercial NiO and the synthesized NiO with 5 mol% Al dopant ($Ni_{0.95}Al_{0.05}O$) were 1,400 s/cm and 2,230 s/cm at $750^{\circ}C$, respectively. However, the electrical conductivity of the synthesized NiO with 10 mol% Al dopant ($Ni_{0.9}Al_{0.1}O$) decreased due to the scattering of free-electrons caused by the large number of impurity atoms; the electrical conductivity of $Ni_{0.9}Al_{0.1}O$ was 545 s/cm at $750^{\circ}C$.

Preparation of AgCl/Ag3PO4/Diatomite Composite by Microemulsion Method for Rapid Photo-Degradation of Rhodamine B with Stability under Visible Light

  • Zhu, Hai-Tao;Ren, Qi-Fang;Jin, Zhen;Ding, Yi;Liu, Xin-Yu;Ni, Xi-Hui;Han, Meng-Li;Ma, Shi-Yu;Ye, Qing;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.383-392
    • /
    • 2020
  • In this paper, AgCl/Ag3PO4/diatomite photocatalyst is successfully synthesized by microemulsion method and anion in situ substitution method. X-ray diffraction (XRD), photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and ultraviolet-visible spectroscopy (UV-Vis) are used to study the structural and physicochemical characteristics of the AgCl/Ag3PO4/diatomite composite. Using rhodamine B (RhB) as a simulated pollutant, the photocatalytic activity and stability of the AgCl/Ag3PO4/diatomite composite under visible light are evaluated. In the AgCl/Ag3PO4/diatomite visible light system, RhB is nearly 100 % degraded within 15 minutes. And, after five cycles of operation, the photocatalytic activity of AgCl/Ag3PO4/diatomite remains at 95 % of the original level, much higher than that of pure Ag3PO4 (40 %). In addition, the mechanism of enhanced catalytic performance is discussed. The high photocatalytic performance of AgCl/Ag3PO4/diatomite composites can be attributed to the synergistic effect of Ag3PO4, diatomite and AgCl nanoparticles. Free radical trapping experiments are used to show that holes and oxygen are the main active species. This material can quickly react with dye molecules adsorbed on the surface of diatomite to degrade RhB dye to CO2 and H2O. Even more remarkably, AgCl/Ag3PO4/diatomite can maintain above 95 % photo-degradation activity after five cycles.

New Magnetic Phases of Fe-N and Mn-Al Alloys Produced by Mechanochemical Milling (기계적 밀링 및 화학적 추출법에 의해 제조한 Fe-N 및 Mn-Al계의 새로운 자성재료)

  • Kyu-Jin Kim;Tae-Hwan Noh;Kenji Suzuki
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.4
    • /
    • pp.347-354
    • /
    • 1994
  • The structural change and magnetic properties of mechanically milled Fe-N and Mn-Al alloy powders have been investigated by XRD, TEM, VSM, $M\"{o}ssbauer$ spectroscopy and inelastic neutron scattering measurements. During milling of ${\gamma}'-Fe_{4}N$ powders, and fcc ${\gamma}'-Fe_{4}N$ phase is transformed to a bct ${\alpha}'-Fe(N)$ phase by stress-induced martensitic transformation, being accompanied by an initial increase in saturation magnetization. During annealing the bct ${\alpha}'-Fe(N)$ nanocrystalline phase which is obtained by mechanical grinding for a long time, an ${\alpha}'-Fe_{16}N_{2}$ phase partially appears as an intermediate phase at 673~773 K, causing an increase in saturation magnetization. During milling of Mn-45, 70 and 85 at.% Al mixed powders, Al atoms are partially solubilized into an ${\alpha}-Mn$ phase. The Al supersaturated ${\alpha}-Mn-type$ phases change from paramagnetic to ferromagnetic : the saturation magnetization is 11 emu/g for the as-milled Mn-70 at.% Al powders. Moreover, by removing almost all Al atoms from the as-milled Mn-85 at.% Al powders using chemical leaching, the saturation magnetization increases up to 36 emu/g. The above bct ${\alpha}'-Fe(N)$ and ferromagnetic ${\alpha}-Mn$ type alloys are the magnetic materials found for the first time, by using the present mechanochemical process.

  • PDF

Annealing Effect on Magneto-transport Properties of Amorphous Ge1-xMnx Semiconductor Thin Films (비정질 Ge1-xMnx 박막의 자기수송특성에 미치는 열처리 효과)

  • Kim, Dong-Hwi;Lee, Byeong-Cheol;Lan Anh, Tran Thi;Ihm, Young-Eon;Kim, Do-Jin;Kim, Hyo-Jin;Yu, Sang-Soo;Baek, Kui-Jong;Kim, Chang-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.4
    • /
    • pp.121-125
    • /
    • 2009
  • Amorphous $Ge_1$_$_xMn_x$ semiconductor thin films grown by low temperature vapor deposition were annealed at various temperatures from 400 to $700^{\circ}C$ for 3 minutes in high vaccum chamber. The electrical and magnetotransport properties of as-grown and annealed samples have been studied. X-ray diffraction patterns analysis revealed that the samples still maintain amorphous state after annealling at $500^{\circ}C$ for 3 minutes and they were crystallized when annealing temperature increase to $600^{\circ}C$. Temperature dependence of resistivity measurement implied that as-grown and annealed $Ge_1$_$_xMn_x$ films have semiconductor characteristics, the increase of resistivity with annealling temperature was obseved. The $700^{\circ}C$-annealed sample exhibited negative magnetoresistance (MR) at low temperatures and the MR ratio was ${\sim}$8.5% at 10 K. The asymmetry was present in all MR curves. The anomalous Hall Effect was also observed at 250 K.

Antifungal Activities of the Essential Oils in Syzygium aromaticum (L.) Merr. Et Perry and Leptospermum petersonii Bailey and their Constituents against Various Dermatophytes

  • Park, Mi-Jin;Gwak, Ki-Seob;Yang, In;Choi, Won-Sil;Jo, Hyun-Jin;Chang, Je-Won;Jeung, Eui-Bae;Choi, In-Gyu
    • Journal of Microbiology
    • /
    • v.45 no.5
    • /
    • pp.460-465
    • /
    • 2007
  • This study was carried out in order to investigate the potential of using plant oils derived from Leptospermum petersonii Bailey and Syzygium aromaticum L. Merr. Et Perry as natural antifungal agents. The antifungal effects of essential oils at concentrations of 0.05, 0.1, 0.15, and 0.2 mg/ml on the dermatophytes Microsporum canis (KCTC 6591), Trichophyton mentagrophytes (KCTC 6077), Trichophyton rubrum (KCCM 60443), Epidermophyton floccosum (KCCM 11667), and Microsporum gypseum were evaluated using the agar diffusion method. The major constituents of the active fraction against the dermatophytes were identified by gas chromatography-mass spectrometry and high-performance liquid chromatography analysis. The antifungal activities of S. aromaticum oil (clove oil) against the dermatophytes tested were highest at a concentration of 0.2mg/ml, with an effectiveness of more than 60%. Hyphal growth was completely inhibited in T. mentagrophytes, T. rubrum, and M. gypseum by treatment with clove oil at a concentration of 0.2 mg/ml. Eugenol was the most effective antifungal constituent of clove oil against the dermatophytes T. mentagrophytes and M. canis. Morphological changes in the hyphae of T. mentagrophytes, such as damage to the cell wall and cell membrane and the expansion of the endoplasmic reticulum, after treatment with 0.11 mg/ml eugenol were observed by transmission electron microscopy (TEM). At a concentration of 0.2 mg/ml, L. petersonii oil (LPO) was more than 90% effective against all of the dermatophytes tested, with the exception of T. rubrum. Geranial was determined to be the most active antifungal constituent of L. petersonii oil. Taken together, the results of this study demonstrate that clove and tea tree oils exhibited significant antifungal activities against the dermatophytes tested in this study.