• Title/Summary/Keyword: TEM Journal

Search Result 3,011, Processing Time 0.032 seconds

Synthesis of SnO2 Nanotubes Via Electrospinning Process and Their Application to Lithium Ion Battery Anodes (전기방사법을 통한 주석산화물 나노튜브의 합성 및 리튬이차전지 음극으로의 응용)

  • Lee, Young-In;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.271-277
    • /
    • 2012
  • $SnO_2$ nanotubes were successfully synthesized using an electrospinning technique followed by calcination in air. The nanotubes were the single phase nature of $SnO_2$ and consisted of approximately 14 nm nanocrystals. SEM and TEM characterizations demonstrated that uniform hollow fibers with an average outer diameter of around 124 nm and wall thickness of around 25 nm were successfully obtained. As anode materials for lithium ion batteries, the $SnO_2$ nanotubes exhibited excellent cyclability and reversible capacity of $580mAhg^{-1}$ up to 25 cycles at $100mAg^{-1}$ as compared to $SnO_2$ nanoparticles with a capacity of ${\sim}200mAhg^{-1}$. Such excellent performance of the $SnO_2$ nanotube was related to the one-dimensional hollow structure which acted as a buffer zone during the volume contraction and expansion of Sn.

Synthesis of Nickel and Copper Nanopowders by Plasma Arc Evaporation

  • Cho, Young-Sang;Moon, Jong Woo;Chung, Kook Chae;Lee, Jung-Goo
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.411-424
    • /
    • 2013
  • In this study, the synthesis of nickel nanoparticles and copper nanospheres for the potential applications of MLCC electrode materials has been studied by plasma arc evaporation method. The change in the broad distribution of the size of nickel and copper nanopowders is successfully controlled by manifesting proper mixture of gas ambiance for plasma generation in the size range of 20 to 200 nm in diameter. The factors affecting the mean diameter of the nanopowder was studied by changing the composition of reactive gases, indicating that nitrogen enhances the formation of larger particles compared to hydrogen gas. The morphologies and particle sizes of the metal nanoparticles were observed by SEM, and ultrathin oxide layers on the powder surface generated during passivation step have been confirmed using TEM. The metallic FCC structure of the nanoparticles was confirmed using powder X-ray diffraction method.

A Study on the Recrystallization Behavior of Zr-0.8Sn-xFe Ternary Alloys (Zr-0.8Sn-xFe 3원계 합금의 재결정 거동에 관한 연구)

  • Lim, Yoon-Soo;Choi, Yang-Jin;Wey, Myeong-Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.4
    • /
    • pp.239-245
    • /
    • 2000
  • Effect of tin and iron content on the recrystallization behavior of temary Zr-0.8Sn-x%Nb alloys were studied. The specimens with 0.1, 0.2 and 0.4 wt.% of iron were prepared under various annealing temperatures from $400^{\circ}C$ to $800^{\circ}C$ and times from 30 to 5000 minutes after vacuum arc remelting. The recrystallization behavior was observed using a polarized optical microscope, TEM and micro-vickers hardness tester. The recrystallization temperature of the alloys slightly increased with iron content due to increase of activation energy. The grain growth of the alloys with 0.1 and 0.2 wt.% of iron occured rapidly, however, that of the alloys with 0.4 wt.% iron was gradually retarded due to precipitation. The hardness of the alloy with a high iron slightly increased by the precipitation of beta phase after annealing at $800^{\circ}C$.

  • PDF

The Influence of Support on Gas Mask Cobalt Catalysts for Low Temperature CO Oxidation (방독마스크용 코발트 촉매의 저온 일산화탄소 산화반응에서 지지체의 영향)

  • Kim, Deog-Ki;Kim, Bok-Ie;Shin, Chae-Ho;Shin, Chang-Sub
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.35-45
    • /
    • 2006
  • Cobalt catalysts for gas mask loaded on various supports such as $Al_{2}O_{3},\;TiO_{2}$, AC(activated carbon) and $SiO_{2}$ were used to examine influences of calcination temperatures and reaction temperatures for CO oxidation. $Co(NO_{3})_2{\cdot}6H_{2}O$ was used as cobalt precursor and the catalysts were prepared by incipient wetness impregnation. The catalysts were characterized using XRD, TGA/DTA, TEM, $N_{2}$ sorption, and XPS. For the catalytic activity, support was in the order of ${\gamma}-Al_{2}O_{3}>TiO_{2}>SiO_{2}>AC\;and\;Al_{2}O_{3}$. The catalytic activity at lower temperature than $80^{\circ}C$ showed that with the increase of reaction temperature, cobalt catalysts on ${\gamma}-Al_{2}O_{3},\;TiO_{2},\;AC\$ has the negative activation energy but that of $SiO_{2}$ was positive.

Development of Runway Incursion Risk Assessment Checklist (활주로 침범 위험 분석 체크리스트 개발)

  • Maeng, Sung-Kyu;Jung, Yoon-Sik;Choi, Jin-Kook;Kwon, Bo-Hun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.1
    • /
    • pp.46-54
    • /
    • 2012
  • One major safety issue of surface operations is the occurrence of runway incursions. Runway incursions are the consequence of multiple operational and/or environmental factors. Human error is known to contribute to almost every runway incursion. One major contributing factor for runway incursion is crew's lack of situational awareness during airport surface operations, induced by weather considerations, by complex airport factors or by crew technique itself; it is also caused by ATC issues. Various airport factors may affect pilot situational awareness, distract the crew, or lead to crew confusion. The recommendations to avoid runway incursions are manifold; Proper Crew's CRM/TEM skills, adequate communication technique, proper knowledge of airport surface markings, lights and signs and preparation of preparation of expected taxi out/in routing. Also runway incursion risk assessment on specific airport before flight may lead to aware of risk level and contribute to prevent runway incursion.

Studies on Toxicological Evaluation of Freshwater Sediment using a PLHC-1 Cell Comet Assay (PLHC-1세포주의 Comet assay를 이용한 하천 퇴적토의 생태독성평가)

  • Bak, Jeong-Ah;Hwang, In-Young;Baek, Seung-Hong;Kim, Young-Sug
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.23-30
    • /
    • 2011
  • In this study, the Comet assay (evaluation of DNA damage) used the fish hepatocellular carinoma cell, PLHC-1, was tried to the sediment extract obtained from freshwater to understand its applicability as a tool for monitoring sediment toxicity. In parallel, induced EROD (7-ethoxyresorufin- O-deethylase) activity and DNA damage (TEM values) in PLHC-1 cells were measured for establishing the tandem endpoints of the PLHC-1cell test to test the ecotoxicity of sediment. Among several study sites in a small river passed through downtown and industrial park area, one of them, site B, showed a higher level of EROD activity and DNA damage than other sites. It indicates that a tandem endpoints of PLHC-1 cells could be useful tools for assessing the toxicity of sediment. The sensitivity of Comet assay with PLHC-1 cells was a little higher than that with a blood cell of frog tadpoles to the solvent extract of sediment. According to the results, a PLHC-1 cell-Comet assay could be used as a useful tool for evaluating ecotoxicity of the freshwater sediment. In addition, more detailed studies are needed to the contaminated site.

Study on the Embrittlement of the Mod. 9Cr-1Mo Steel Tempered at $550^{\circ}C$ (Mod. 9Cr-1Mo강에서의 $550^{\circ}C$ 부근에서 템퍼링시 발생하는 취성에 관한 연구)

  • Gu, Ji-Ho;Shin, Jong-Ho;Hur, Sung-Kang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.3
    • /
    • pp.156-162
    • /
    • 2010
  • The modified 9Cr-1Mo steel (P91 steel) is very popular as a boiler tube material of the USC (Ultra-Supercritical) power plants. The steels were tempered in the temperature range of 400 to $650^{\circ}C$ and the mechanical tests, such as impact and hardness tersts were performed at the room temperature for the tempered steels. A drop in the impact value (embrittlement) and the hardeness increase were simultanously observed in the range of temperature between $475^{\circ}C$ and $600^{\circ}C$, particularly at $550^{\circ}C$. TEM observation shows the hardening was caused by $M_2C$, resulting in the embrittlement. And the maximum volume fraction of $M_3C$ was also observed at $550^{\circ}C$, Therefore, the embrittlement seems to be caused by both the $M_2C$ and $M_3C$.

Dissolution Behavior of Complex Carbonitrides in a Microalloyed Steel (Microalloyed 강에서 복합 탄질화물의 재용해 거동)

  • Jung, Jae-Gil;Park, June-Soo;Ha, Yang-Soo;Lee, Young-Kook;Bae, Jin-Ho;Kim, Kisoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.6
    • /
    • pp.287-292
    • /
    • 2008
  • Dissolution behavior of complex carbonitrides in a Nb-Ti-V microalloyed steel was quantitatively examined by electrical resistivity, transmission electron microscopy (TEM), and optical microscopy. The electrical resistivity increased with solution treatment temperature up to $1250^{\circ}C$ for a holding time of 15 min. But, an increasing rate of electrical resistivity with temperature was obviously decreased above $1150^{\circ}C$. As the solution treatment temperature increases, irregular shaped Nb-rich carbonitrides disappear and cuboidal Ti-rich carbonitrides are observed. Abnormal grain growth occurs above $1250^{\circ}C$ for a holding time of 15 min. The optimal solution treatment temperature of a Nb-Ti-V microalloyed steel was determined as $1200^{\circ}C$ for a holding time of 15 min.

A study on the factors affecting Cu(Mg) alloy resistivity (Cu(Mg) alloy의 비저항에 영향을 미치는 인자에 대한 연구)

  • 조흥렬;조범석;이재갑;박원욱;이은구
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.695-702
    • /
    • 1999
  • We have explored the factors affecting the resistivity of Cu (Mg) alloy, which was prepared by sputtering. The results show that the resistivity is a function of Mg content, annealing temperature, annealing time, and Cu-alloy thickness. Addition of Mg to copper increases the resistivity through solute scattering. In addition, increasing Mg content promotes the interfacial reaction between Mg and SiO$_2$ to produce the free silicon and the generated free silicon dissolves into copper, resulting in a significant increase of resistivity. Furthermore, increasing oxidation temperature rapidly decreases the resistivity at the initial stage of oxidation and then continues to increase the resistivity to the saturation value with increasing oxidation time. The saturation value depends on the residual Mg content and the thickness of the alloy. TEM and AES analyses reveal that dense, uniform MgO grows to the limiting thickness of about $150\AA$. However, interfacial MgO does not show the limiting thickness, instead continues to grow until Mg is completely exhausted. From these facts, we proposed the maximum available Mg content needed to from the dense MgO on the surface and suppress the excessive interfacial reaction.

  • PDF

Microstructure and Strengthening Behavior in Squeeze Cast Mg-Zn by Addition of Zr (용탕단조 Mg-Zn-Zr 합금의 미세조직 및 강화기구)

  • Oh, Sang-Sub;Hwang, Young-Ha;Kim, Do-Hyang;Hong, Chun-Pyo;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.19 no.1
    • /
    • pp.38-46
    • /
    • 1999
  • Microstructural characteristics and strengthening behavior in Mg-5wt%Zn-0.6wtZr alloys have been investigated by a combination of optical, secondary electron and transmission electron microscopy, differential thermal analysis, and hardness and tensile, creep property measurements. The result have been compared with those of Mg-5wt%Zn alloys. The as-squeeze cast microstructure consisted of dendrite ${\alpha}-Mg$, interdendrite or intergranular $Mg_7Zn_3$ and fine dispersoids of $ZnZr_2$. The size of secondary solidification phases in Mg-5wt%Zn-0.6wtZr alloys was significantly smaller than that of the Mg-5wt%Zn alloys due to the existence of fine dispersoid of $ZnZr_2$ which also effected the refinement of grain size. TEM study showed that the main cause of age hardening is formation of fine rodlike ${\beta}_1\;'$ precipitates as well as fine $ZnZr_2$ dispersoids. Due to the observed microstructural characteristics mechanical propeties of Mg-5wt%Zn-0.6wtZr alloys was found to be superior to those of Mg-5wt%Zn alloys.

  • PDF