• Title/Summary/Keyword: TEM셀

Search Result 2, Processing Time 0.016 seconds

Input Power Determination of TEM Cell Due to SAR for Mobile Phone Wave Blood Exposure (휴대폰 전자파의 혈액 조사를 위한 SAR별 TEM 셀의 입력 전력 산출)

  • Youn Ji-Hun;Son Tae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.8 s.99
    • /
    • pp.810-814
    • /
    • 2005
  • Input power for TEM cell apparatus due to SAR(Specific Absorption Rate) for culture blood cell is determined by the transmission and reflection measurement of blood into the TEM cell. Blood cell with skin cell are reference culture cells for the study of EM wave effect. Exposure RF power from exposure apparatus to culture cell should not only exact for SAR value, but also should be based on the theoretical theory. In this paper, insertion loss of 50 g blood was measured to know exposure power per gram for culture blood cell, and input power of TEM cell due to SAR 0.8, 1.6, 3, 4 mW/g using the measured data are delivered. This study is for applying to EM wave exposure apparatus to culture cell.

Dispersion Analysis for Rectangular Coaxial Line and TEM Cell (네모 동축선과 TEM 셀의 분산관계 해석)

  • Cho, Yong-Heui
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.124-130
    • /
    • 2007
  • A rectangular coaxial line is mainly utilized as a transition structure from a coaxial line to a rectangular waveguide. A TEM cell is also widely used to measure the EMC characteristics of a DUT. In order to understand the operations of a rectangular coaxial line and a TEM cell, it is essential to analyze the dispersion relations of a rectangular coaxial line and a TEM cell. In this paper, we present simple yet accurate dispersion relations of the TE and TM higher modes based on the TEM mode. Manipulating a mode-matching technique and a Green's function approach allows us to obtain the analytic dispersion equations of a rectangular coaxial line and a TEM cell. In our approach, a rectangular coaxial line is divided into four L-blocks and its electromagnetic fields representations are easily obtained with a superposition. To verify the convergence of our dispersion relations, we perform numerical computations and compare our results with those of FDTD.