• 제목/요약/키워드: TEM(Transmission Electron Microscopy)

검색결과 1,076건 처리시간 0.031초

Effect of surface treatment of graphene nanoplatelets for improvement of thermal and electrical properties of epoxy composites

  • Kim, Minjae;Kim, Yeongseon;Baeck, Sung Hyeon;Shim, Sang Eun
    • Carbon letters
    • /
    • 제16권1호
    • /
    • pp.34-40
    • /
    • 2015
  • In this study, in order to improve the thermal and electrical properties of epoxy/graphene nanoplatelets (GNPs), surface modifications of GNPs are conducted using silane coupling agents. Three silane coupling agents, i.e. 2-(3,4-epoxycyclohexyl)-ethyltrimethoxysilane (ETMOS), 3-glycidoxypropyltriethoxysilane (GPTS), and 3-glycidoxypropyltrimethoxysilane (GPTMS), were used. Among theses, GPTMS exhibits the best modification performance for fabricating GNP-incorporated epoxy composites. The effect of the silanization is evaluated using transmission electron microscopy (TEM), scanning electron microscopy, thermogravimetric analysis, and energy dispersive X-ray spectroscopy. The electrical and thermal conductivities are characterized. The epoxy/silanized GNPs exhibits higher thermal and electrical properties than the epoxy/raw GNPs due to the improved dispersion state of the GNPs in the epoxy matrix. The TEM microphotographs and Turbiscan data demonstrate that the silane molecules grafted onto the GNP surface improve the GNP dispersion in the epoxy.

Effect of Blowing Agents on Physical Properties of Polyurethane-polydimethylsiloxane Hybrid Foam

  • Asell Kim;Hyeonwoo Jeong;Sang Eun Shim
    • Elastomers and Composites
    • /
    • 제58권4호
    • /
    • pp.208-215
    • /
    • 2023
  • In this study, the properties of polyurethane-polydimethylsiloxane (PU-PDMS) hybrid foams containing different types and contents of physical blowing agents (PBAs) were investigated. Two types of blowing agents, namely physical blowing agents and thermally expandable microspheres (TEM), were applied. The apparent density was measured using precisely cut foam samples, and the pore size was measured using image software. In addition, the microstructure of the foam was confirmed via scanning electron microscopy and transmission electron microscopy. The thermal conductivities related to the microstructures of the different foams were compared. When 0.5 phr of the hydrocarbon-based PBA was added, the apparent density and pore size of the foam were minimal; however, the pore size was larger than that of neat foam. In contrast, the addition of 3 phr of TEM effectively reduced both the apparent density and pore size of the PBAs. The increase in resin viscosity owing to TEM could enhance bubble production stability, leading to the formation of more uniform and smaller pores. These results indicate that TEM is a highly efficient PBA that can be employed to decrease the weight and pore size of PU-PDMS hybrid foams.

정확한 위상정보를 얻기 위한 탈초점 영상들의 이미지 처리기법 (Image Processing of Defocus Series TEM Images for Extracting Reliable Phase Information)

  • 송경;신가영;김종규;오상호
    • Applied Microscopy
    • /
    • 제41권3호
    • /
    • pp.215-222
    • /
    • 2011
  • We discuss the experimental procedure for extracting reliable phase information from a defocus series of transmission electron microscopy (TEM) dark-field images using the transport of intensity equation (TIE). Taking InGaN/GaN multi-quantum well light-emitting diode as a model system, various factors affecting the final result of reconstructed phase such as TEM sample preparation, TEM imaging condition, image alignment, the correction of defocus values and the use of high frequency pass filter are evaluated. The obtained phase of wave function was converted to the geometric phase of the corresponding lattice planes, which was then used for the two-dimensional mapping of lattice strain following the dark-field inline holography (DIH) routine. The strain map obtained by DIH after optimized image processing is compared with that obtained by the geometric phase analysis of high resolution TEM (HRTEM) image, manifesting that DIH yields more accurate and reliable strain information than HRTEM-based GPA.

Tannic acid를 이용한 전자현미경 (TEM) 염색효과 (Electron Microscopic Stain Effect by Tannic acid)

  • 윤철종;한정연;김철우;지제근
    • Applied Microscopy
    • /
    • 제24권2호
    • /
    • pp.37-47
    • /
    • 1994
  • Using mouse tissue, we studied electron opacity effect of tannic acid for transmission electron microscopic staining. Tannic acid-glutaraldehyde in 0.1M phosphate buffer was used as a fixative. To compare with this we have tested another method consisting of heavy metal staining after treatment of tannic acid in sodium tetraborate (borax) on glutaraldehyde-fixed sections. We have achieved equally consistent electron opacity in both methods. The elastin, collagen, basal lamina of skin and gap junctions of the epithelial cells gave excellent results, while it was good for glycogen, cilia, and plasma. Also fat cells and lipid droplets gave good preservation when tannic acid was added in the fixative. However, prolonged fixation in tannic acid-added fixative was hazardous for further processing, i.e., sectioning problem and deep electron opacity background.

  • PDF

표면복제법을 이용한 세라믹 복합재료 파괴현상의 투과전자현미경 분석 (Fractographic Analysis of Ceramic Composites by Transmission Electron Microscopy using Surface Replication Technique)

  • 전형우;김긍호;김병호
    • Applied Microscopy
    • /
    • 제26권4호
    • /
    • pp.447-456
    • /
    • 1996
  • Fracture surfaces of materials contain useful information ranging from crack path to the mechanism of fracture. Since limitation of electron transparency requires a sample in the form of thin foil for TEM observations, it is impossible to extract such information directly from the fracture surfaces. In this study, the method of surface replication from the ceramic fracture surface is employed to characterize the process of crack propagation in ceramic matrix composites using TEM analysis. The surface replica from the fracture surface in ceramic materials provides detailed surface morphology and more importantly, loosened particles on the fracture surface are collected. Electron diffraction and chemical composition analyses of these particles reveal crack path in the specimen. Furthermore, one can determine the mode of fracture by observing the fracture surface morphology from the image of replica. Two examples are given to illustrate the potential of the surface replication technique. In the first example, apparent toughness increase in $B_{4}C-Al$ composites at high strain rate is investigated by surface replication to elucidate the mechanism of fracture at different strain rates. The polytypes of SiC formed during the sintering of SiC-AlN composite and their effect on the fracture behavior of SiC-AlN composite are analyzed in the second example.

  • PDF

준결정상을 포함한 Mg-Zn-Y 합금의 기계적 특성 및 부식 저항성 (Mechanical Property and Corrosion Resistance of Mg-Zn-Y Alloys Containing Icosahedral Phase)

  • 김도형;김영균;김원태;김도향
    • 대한금속재료학회지
    • /
    • 제49권2호
    • /
    • pp.145-152
    • /
    • 2011
  • Mechanical and property corrosion resistance of Mg-Zn-Y alloys with an atomic ratio of Zn/Y of 6.8 are investigated using optical microscopy, scanning electron microscopy, transmission electron microscopy, uniaxial tensile test and corrosion test with immersion and dynamic potentiometric tests. The alloys showed an in-situ composite microstructure consisting of ${\alpha}$-Mg and icosahedral phase (I-phase) as a strengthening phase. As the volume fraction of the I-phase increases, the yield and tensile strengths of the alloys increase while maintaining large elongation (26~30%), indicating that I-phase is effective for strengthening and forms a stable interface with surrounding ${\alpha}$-Mg matrix. The presence of I-phase having higher corrosion potential than ${\alpha}$-Mg, decreased the corrosion rate of the cast alloy up to I-phase volume fraction of 3.7%. However further increase in the volume fraction of the I-phase deteriorates the corrosion resistance due to enhanced internal galvanic corrosion cell between ${\alpha}$-Mg and I-phase.

투과전자현미경에 타소질 불순물의 오염 최소화를 위한 실험 조건 (Experimentally Minimized Contaminative Condition of Carbonaceous Artifacts in Transmission Electron Microscope)

  • 김영민;최주형;송경;김양수;김윤중
    • Applied Microscopy
    • /
    • 제39권1호
    • /
    • pp.73-77
    • /
    • 2009
  • Contaminative artifacts such as carbonaceous materials on carbon-coated microgrids are unavoidable, which is induced by electron beam exposure inside electron microscopes. This phenomenon raise a source to produce confusing information to the samples investigated by analytical TEM, which should be alleviated as much as possible. As experimental precautions for reducing this unwanted effect, the use of $LN_2$ cooled anti-contaminator and pre-illumination of electron beam at low magnification can be helpful. Nevertheless, we should be cautious to set an illumination condition for microanalysis because the contaminative effect is dependent with the types of irradiation situations, which is well known to be a decisive factor for causing the carbonaceous artifacts. Accordingly, it is necessary that optimal illumination to minimize the contaminative effect should be selected for improving the accuracy of microanalysis. In this paper, we introduce the practical method to determine the optimal illumination condition by evaluating the contaminative effect as a function of instrumental spot size, which is directly linked with electron current density.

ARB법에 의한 Cu-Fe-P합금의 초미세결정립 형성 (Formation of Ultrafine Grains in Cu-Fe-P Alloy by Accumulative Roll-Bonding Process)

  • 이성희;한승전;김형욱;임차용
    • 한국재료학회지
    • /
    • 제19권8호
    • /
    • pp.432-436
    • /
    • 2009
  • A Cu-Fe-P copper alloy was processed by accumulative roll-bonding (ARB) for ultra grain refinement and high strengthening. Two 1mm thick copper sheets, 30 mm wide and 300 mm long, were first degreased and wire-brushed for sound bonding. The sheets were then stacked on top of each other and roll-bonded by about 50% reduction rolling without lubrication at ambient temperature. The bonded sheet was then cut into two pieces of the same dimensions and the same procedure was repeated for the sheets up to eight cycles. Microstructural evolution of the copper alloy with the number of the ARB cycles was investigated by optical microscopy (OM), transmission electron microscopy(TEM), and electron back scatter diffraction(EBSD). The grain size decreased gradually with the number of ARB cycles, and was reduced to 290 nm after eight cycles. The boundaries above 60% of ultrafine grains formed exhibited high angle boundaries above 15 degrees. In addition, the average misorientation angle of ultrafine grains was 30 degrees.

청녹색 레이저 다이오드 구조에 관한 TEM 관찰 (TEM Observations on the Blue-green Laser Diode)

  • 이확주;류현;박해성;김태일
    • Applied Microscopy
    • /
    • 제27권3호
    • /
    • pp.257-263
    • /
    • 1997
  • Microstructural characterizations of II-VI blue laser diodes which consist of quaternary $Zn_{1-x}Mg_xS_ySe_{l-y}$ cladding layer, ternary $ZnS_ySe_{l-y}$ guiding layer and $Zn_{0.8}Cd_{0.2}Se$ quantum well as active layer were carried out using the transmission electron microscope working at 300 kV. Even though the entire structure is pseudomorphic to GaAs substrate, the structure had contained numerous extended stacking faults and dislocations which had created at ZnSe/GaAs interfaces and then further grown to the top of the epilayers. These faults might be expected to cause the degradation and shortening the lifetime of laser devices.

  • PDF

Microstructure of Cured Urea-Formaldehyde Resins Modified by Rubber Latex Emulsion after Hydrolytic Degradation

  • Nuryawan, Arif;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권5호
    • /
    • pp.605-614
    • /
    • 2014
  • This study investigated microstructural changes of cured urea-formaldehyde (UF) resins mixed with aqueous rubber latex emulsion after intentional acid etching. Transmission electron microscopy (TEM) was used in order to better understand a hydrolytic degradation process of cured UF resins responsible for the formaldehyde emission from wood-based composite panels. A liquid UF resin with a formaldehyde to urea (F/U) molar ratio 1.0 was mixed with a rubber latex emulsion at three different mixing mass ratios (UF resin to latex = 30:70, 50:50, and 70:30). The rate of curing of the liquid modified UF resins decreased with an increase of the rubber latex proportion as determined by differential scanning calorimetry (DSC) measurement. Ultrathin sections of modified and cured UF resin films were exposed to hydrochloric acid etching in order to mimic a certain hydrolytic degradation. TEM observation showed spherical particles and various cavities in the cured UF resins after the acid etching, indicating that the acid etching had hydrolytically degraded some part of the cured UF resin by acid hydrolysis, also showing spherical particles of cured UF resin dispersed in the latex matrix. These results suggested that spherical structures of cured UF resin might play an important role in hindering the hydrolysis degradation of cured UF resin.