• Title/Summary/Keyword: TE-OLED

Search Result 5, Processing Time 0.019 seconds

Electrical and Optical Characteristics of Top-emission OLED (전면 발광 OLED의 전기 광학적 특성)

  • Shin, Eun-Chul;Ahn, Hui-Chul;Han, Won-Geun;Jang, Kyung-Uk;Choi, Seong-Jae;Lee, Ho-Sik;Song, Min-Jong;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04b
    • /
    • pp.22-23
    • /
    • 2008
  • 본 연구에서는 전면 유기 발광소자(TE-OLED)를 제작하여 전기 광학적 특성을 연구하였다. 전면 발광 OLED의 투명 전극으로 사용된 Al과 Ag의 박막 두께에 따른 투과율과 면저항값은 다음과 같이 나타났다. 파장 520nm의 기준으로 Al 금속 박막의 두께가 10nm 이하여야 50% 투과율을 보였고, 반면 Ag는 25nm 이하로 나타났다. 면저항값은 박막두께 20nm 기준으로 Al은 약 $40\Omega/\square$, Ag는 $10\Omega/\square$이하로 나타났다. 전면발광 방식의 시야각에 따른 빛의 세기는 cos $60^{\circ}$ 일 때 0.1로, TE-OLED는 시야각이 증가하였을 때 현저히 감소되는 것을 볼 수 있다. TE-OLED의 시야각의 증가에 따른 EL-peak 또한 약 520nm의 파장대에서 약 500nm으로 변화하였다. 전면 발광 방식의 반폭치(FWHM)는 배면 발광 방식 보다 약 32nm정도 좁게 나타났다.

  • PDF

Influence of Electrode and Thickness of Organic Layer to the Emission Spectra in Microcavity Organic Light Emitting Diodes (마이크로캐비티 OLED의 전극과 유기물층 두께가 발광 스펙트럼에 미치는 영향)

  • Kim, Chang-Kyo;Han, Ga-Ram;Kim, Il-Yeong;Hong, Chin-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1183-1189
    • /
    • 2012
  • Organic light-emitting diodes (OLEDs) using microcavity effect have attracted great attention because they can reduce the width of emission spectra from organic materials, and enhance brightness from the same material. We demonstrate the simulation results of the radiation properties from top-emitting organic light-emitting diodes (TE-OLEDs) with microcavity structures based on the general electromagnetic theory. Organic materials such as N,N'-di (naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB) as a hole transport layer and tris (8-hydroxyquinoline) ($Alq_3$) as emitting and electron transporting layer are used to form the OLEDs. The organic materials were sandwiched between anode such as Ni or Au and cathode such as Al, Ag, or Al:Ag. The devices were characterized with electroluminescence phenomenon. We confirmed that the simulation results are consistent with experimental results.

Organic-layer and reflectivity of transparent electrode dependent, microcavity effect of top-emission organic light-eitting diodes (TE-OLED의 유기물층과 반투명 음전극의 반사도에 따른 마이크로 캐비티 특성)

  • An, Hui-Chul;Na, Su-Hwan;Joo, Hyun-Woo;Mok, Rang-Kyun;Jung, Kyung-Seo;Chio, Seong-Jea;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.299-300
    • /
    • 2009
  • We have studied an organic layer and semitransparent Al cathode thickness dependent optical properties for top-emission organic light-emitting diodes. Device structure is ITO(170nm)/TPD(xnm)/$Alq_3$(ynm)/LiF(0.5nm)/Al(100nm) and Al(100nm)/TPD(xnm)/$Alq_3$(ynm)/LiF(0.5nm)/Al(25nm). While a thickness of total, organic layer was varied from 85nm to 165nm, a ratio of those two layers was kept to be about 2:3. Then it was compared with that of bottom devices. And a thickness of semitransparent Al cathode was varied from 20nm to 30nm for the device with an organic layer thickness of 140nm. We were able to control the emission spectra from the top-emission organic light-emitting diodes.

  • PDF

Electrical Properties of Local Bottom-Gated MoS2 Thin-Film Transistor

  • Kwon, Junyeon;Lee, Youngbok;Song, Wongeun;Kim, Sunkook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.375-375
    • /
    • 2014
  • Layered semiconductor materials can be a promising candidate for large-area thin film transistors (TFTs) due to their relatively high mobility, low-power switching, mechanically flexibility, optically transparency, and amenability to a low-cost, large-area growth technique like thermal chemical vapor deposition (CVD). Unlike 2D graphene, series of transition metal dichalcogenides (TMDCs), $MX_2$ (M=Ta, Mo, W, X=S, Se, Te), have a finite bandgap (1~2 eV), which makes them highly attractive for electronics switching devices. Recently, 2D $MoS_2$ materials can be expected as next generation high-mobility thin-film transistors for OLED and LCD backplane. In this paper, we investigate in detail the electrical characteristics of 2D layered $MoS_2$ local bottom-gated transistor with the same device structure of the conventional thin film transistor, and expect the feasibility of display application.

  • PDF

Effect of V2O5 Content and Pre-Sintering Atmosphere on Adhesive Property of Glass Frit for Laser Sealing of OLED (OLED 레이저 실링용 글라스 프릿에서 V2O5 함량 및 가소성 분위기가 접합 특성에 미치는 영향)

  • Jeong, HyeonJin;Lee, Mijai;Lee, Youngjin;Kim, Jin-Ho;Jeon, Dae-Woo;Hwang, Jonghee;Lee, Jungsoo;Yang, Yunsung;Youk, Sookyung;Park, Tae-Ho;Moon, Yun-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.489-493
    • /
    • 2016
  • In this study, the effect of vanadium oxide ($V_2O_5$) content and pre-sintering atmosphere on sealing property of glass frit that consisted of $V_2O_5-BaO-ZnO-P_2O_5-TeO_2-CuO-Fe_2O_3-SeO_2$ was investigated by XPS (X-ray photoelectron spectroscopy). The content of V2O5 was changed to 15, 30, and 45 mol%, and the pre-sintering was carried out in air and $N_2$ condition, respectively. XPS analysis conducted before and after laser irradiation with identical sample. Before laser treatment, glass frits that were pre-sintered at air condition showed both $V^{4+}$ and $V^{5+}$, but the valence state was changed to $V^{5+}$ after laser irradiation when the glass frits contained 30 and 45 mol% $V_2O_5$; this change led to non-adhesive property. On the other hand, glass frits that were pre-sintered at $N_2$ condition exhibited only $V^{4+}$ and it showed fine adhesion irrespective of the $V_2O_5$ content. As a result, the existence of $V^{4+}$ seems to be a major factor for controlling the adhesive property of glass frit for laser sealing.