• Title/Summary/Keyword: TDOA Method

Search Result 114, Processing Time 0.027 seconds

Software-Based Loran-C Signal Processing (소프트웨어 기반 Loran-C 신호 처리)

  • Im, Jun-Hyuck;Im, Sung-Hyuck;Kim, Woo-Hyun;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.188-193
    • /
    • 2010
  • With GPS being the primary navigation system, Loran use is in steep decline. However, according to the final report of vulnerability assessment of the transportation infrastructure relying on the global positioning system prepared by the John A. Volpe National Transportation Systems Center, there are current attempts to enhance and re-popularize Loran as a GPS backup system through the characteristic of the ground based low frequency navigation system. To advance the Loran system such as Loran-C modernization and eLoran development, research is definitely needed in the field of Loran-C receiver signal processing as well as Loran-C signal design and the technology of a receiver. We have developed a set of Matlab tools, which implement a software Loran-C receiver that performs the receiver's position determination through the following procedure. The procedure consists of receiving the Loran-C signal, cycle selection, calculation of the TDOA and range, and receiver's position determination through the Least Square Method. We experiences the effect of an incorrect cycle selection and various error factors (ECD, ASF, sky wave, CRI, etc.) from the result of the Loran-C signal processing. It is apparent that researches which focus on the elimination and mitigation of various error factors need to be investigated on a software Loran-C receiver. These aspects will be explored in further work through the method such as PLL and Kalman filtering.

The Geolocation Estimation System for a Stationary Emitter using Rotating Antenna (회전안테나를 이용한 고정 신호원 위치탐지 시스템)

  • Kwak, Hyungyu;Kim, Sangwon;Choi, Daegyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.681-689
    • /
    • 2016
  • In the direction and location finding field of application, AOA, TDOA and FDOA, etc. are used to improve the performance of geolocation. But, these methods cause some limitations such as the calibrations for phase and amplitude matching and precise time synchronization among receiving channels. In this paper, We suggest a method for generating FDOA using rotating antenna and the geolocation of stationary emitter using two receivers in one platform for minimizing the limitations. We present performance of simulation results and test results of the FDOA geolocation system. The direction finding errors of the system are less than $0.1^{\circ}$ rms and the distance errors are less than 3 % compared with the practical distance.

Improvement of CAF estimation performance (CAF 계산의 효율성 개선과 성능 향상)

  • Cho, Se-Young;Kim, Soo-Young
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.1
    • /
    • pp.21-27
    • /
    • 2009
  • In this paper, we introduce a simulation result of cross ambiguity function (CAF) using time difference of arrival and frequency difference of arrival. This method is generally used to find a geographical location of the unknown radio transmitter. If multiple signals with the same source information are arrived at a receiver via different paths, then they will have different time delays and Doppler shifts. We can estimate the CAF by using these characteristics, and estimate the location of the unknown transmitter. This paper introduces a technique to improve the estimation performance of CAF.

  • PDF

A Study on Dynamic Trigger Threshold in Indoor Positioning System (실내 위치 추정 시스템에서의 동적 트리거 임계값에 관한 연구)

  • Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.155-161
    • /
    • 2015
  • As the popularity of the smartphone becomes increase, indoor smartphone positioning technology has been actively studied. The acoustic signal generated from the smartphone is received from the several microphones at the relative positioning system, and the trigger signal is proposed to mitigate the multipath effect and the effect is verified. But for the simple trigger method, there would be error occurred according to the variation of the distance or surrounding noise. In this paper, in order to resolve the problems, the dynamic trigger threshold technology is proposed and its effect is verified by the experiment.

Direct Position Determination Method with Improved Accuracy for Estimating Static Source Position (고정 신호원의 위치 추정을 위한 직접 위치 결정 기법의 정확도 향상 방법)

  • Lim, Jaehyuk;Lee, Seungjin;Song, Jong-In;Chung, Wonzoo;Lee, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.884-890
    • /
    • 2018
  • In this paper, an improved method of estimating static source location is proposed based on the direct position determination(DPD) method, which estimates a source position directly using received signals. When the source position is estimated using the conventional DPD method, the estimation accuracy and error depend on a pair of receivers: a reference receiver and one of the multiple moving receivers. Based on this, the weighting values of the estimating source location were obtained using the covariance matrix for the pair of receivers($S_1$, $S_{2i}$) and applied to the DPD algorithm. Finally, the source position was estimated using the proposed DPD algorithm, and it was verified that the estimation accuracy improved, compared to the conventional DPD algorithm.

TDoA-Based Practical Localization Using Precision Time-Synchronization (정밀 시각동기를 이용한 TDoA 기반의 위치 탐지)

  • Kim, Jae-Wan;Eom, Doo-Seop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.2
    • /
    • pp.141-154
    • /
    • 2013
  • The technology of precise time-synchronization between signal receive devices for separation distance operation can be a key point for the technology with TDoA-based system. We propose a new method for the higher accuracy of system's time-synchronization in this paper, which uses OCXO and DPLL with high accuracy to achieve phase synchronization at 1 pps (pulse per second) of signal. And the method receive time value from a GPS satellite. Essentially, the performance of GPS with high accuracy refers to long-term frequency stability for its reliability. As per the characteristic, as the GPS timing signals are synchronized continuously, the accuracy of time-synchronization gets improved proportionally. Therefore, if the time synchronization is accomplished, the accuracy of the synchronization can be up to 0.001 ppb (part per billion). Through the improved accuracy of the time-synchronization, the measurement error of TDOA-based location detection technology is evaluated. Consequently, we verify that TDoA-based location measurement error can be greatly improved via using the improved method for time-synchronization error.

On Estimating Position and Velocity of Mobile Stations by Path-loss Data Base in a Cellular System (셀룰라 이동 통신 시스템에서 경로손실 데이터 베이스를 이용한 이동국의 위치와 속도 추정 방식)

  • Lee, Sang-Hun;Chung, Woo-Gon;Choi, Hyung-Jin
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.19-27
    • /
    • 1998
  • To achieve the required services in the next-generation cellular telephone systems, the size of the cell become smaller and/or is of mixed macrocells and microcells. For more efficient system control, We make use of the mobile position and velocity information, provided that the mobility information is relatively accurate. In this paper, we propose an improved version of path-loss measurement algorithm introduced in literature[11]. The microcellular structure with severe multipath fading, reflection and refraction make mobile position and velocity estimation very difficult. In the proposed method, the pre-recorded path-loss informations, called the discrete position data base, are searched to estimate the position. Velocity estimation is obtained as a difference of the position values with respect to the time difference. Moving average filter is applied to smooth the estimated velocity and to reduce the error in the estimates. We also propose a method to simplify system implementation by reducing search area for discrete area database.

  • PDF

A Study on Efficient UWB Positioning Error Compensation Technique (효율적인 UWB 무선 측위 오차 보상 기법에 관한 연구)

  • Park, Jae-Wook;Bae, Seung-Chun;Lee, Soon-Woo;Kang, Ji-Myung;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.727-735
    • /
    • 2009
  • To alleviate positioning error using wireless ultra-wideband (UWB) is primary concern, and it has been studied how to reduce the positioning error effectively. Thanks to many repeated transmissions of UWB signals, we can have a variety of selections to point out the most precise positioning result. Towards this, scanning method has been preferred to be used due to its simplicity. This exhaustive method firstly fixes the candidate position, and calculates the sum of distances from observed positions. However, it has tremendous number of computations, and the complexity is more serious if the size of two-dimensional range is the larger. To mitigate the large number of computations, this paper proposes the technique employing genetic algorithm and block windowing. To exploit its superiority, simulations will be conducted to show the reduction of complexity, and the efficiency on positioning capability.

Analysis of Hearability in Geolocation Using Mobile WiMax Network (WiBro 망을 이용한 지상파 측위 시스템의 가청성 분석)

  • Song, Seung-Hun;Park, Ji-Won;Sung, Tae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • Geo-location using a cellular network is a core technology for LBS together with GPS. With preamble symbols broadcasted in each frame, geo-location using WiBro network can be easily implemented. Because the WiBro network has a cellular structure, it is difficult for a mobile station to detect signals from multiple base stations. In order to get user position using trilateration, long integration techniques for sensitivity enhancement should be employed. This paper presents hybrid integration scheme for WiBro network. By analyzing coherent and non-coherent integration loss according to frequency residual and SNR respectively, optimal combination of the hybrid integration is proposed. Simulation results show that the hybrid integration method is profitable in WiBro network when the frequency residual is estimated and compensated accurately.

Improving Location Positioning using Multiple Reference Nodes in a LoRaWAN Environment (LoRaWAN 환경에서 다중 레퍼런스 노드를 이용한 위치 측위 향상 기법)

  • Kim, Jonghun;Kim, Ki-Hyung;Kim, Kangseok
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Low-power long-range networks (LoRa) has a comprehensive coverage of up to 30 km, so that long-range positioning is possible. However, the position error in the current LoRa environment is over 500 m. This makes it difficult to use practical location services in the LoRa environment. In this paper, we propose a method to improve the position accuracy by correcting an inaccurate visual error when sending a signal from a mobile node to a gateway through the reference node of each zone in the LoRa environment. Experiments were carried out using MATLAB, and a radio propagation algorithm, the Hata model, was used to cancel out the stationary noise and to evaluate the environmental noise. Experimental results showed that the error range decreased as the number of reference nodes increased and a mobile node approach the reference node.