• Title/Summary/Keyword: TDF PID controller

Search Result 3, Processing Time 0.016 seconds

Design of a Shipboard Night Vision System (선박 Night Vision 시스템용 Pedestal의 제어부 개발)

  • Kim, Jung-Keun;Kim, Jong-Min;Park, Ki-Rang;Song, Se-Hun;Baek, Seung-Hun;Jin, Sang-Hun;Jung, In;Hwang, Seung-Wook;Jin, Gang-Gyoo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.107-108
    • /
    • 2006
  • This paper presents the design of a night vision system for vessels. Both a hardware system and software modules for stabilization control are developed. In order to stabilize each control axis, the two-degree of freedom(TDF) PID controller is designed and its parameters are tuned using a real-coded genetic algorithm(RCGA). Simulation demonstrates the effectiveness of the proposed system.

  • PDF

Implementation of the robust speed control system for DC servo motor using TDF compensator method (2자유도 보상법에 의한 직류서보전동기의 강인한 속도제어시스템 구현)

  • Kim, Dong-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.2
    • /
    • pp.74-80
    • /
    • 2003
  • In this paper, a robust two-degree-of-freedom(TDF) the speed control system using $H_{\infty}$ optimization method and real genetic algorithm is proposed for the robust stability and the robust performance in dc servo motor system. This control system composed of feedback and feedforward controller. The feedback(FB) controller with $H_{\infty}$ optimization method is designed for real genetic algorithm that is model matching problem using mixed sensitivity function. The feedforward(FF) controller with $H_{\infty}$optimization method is minimized the error between transfer function of the optimal model and the overall transfer function. The proposed robust two-degree-of-freedom speed control system is simulated to the dc servo motor. By the simulation, feedback controller can obtain the robust stability property and feedforward controller can obtain the robust performance property under modelling error. The performance of the dc servo motor is analyzed by the experiment setting. The validity of the proposed method is verified through being compared with pid(proportional integrated differential)control system design method for the dc servo motor.

Design of a Pedestal Part for the Marine Surveillance Night Vision System

  • Kim, Jung-Keun;Kim, Jong-Min;Park, Ki-Rang;Song, Se-Hun;Baek, Seung-Hun;Baek, Jong-Ok;Lee, Yun-Hyung;Hwang, Seung-Wook;Jin, Gang-Gyoo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.123-128
    • /
    • 2006
  • This paper presents the design of a surveillance night vision system for marine ships. Both a hardware system and software modules for tracking control are developed. In order to control each control axis with compensation for ship motion, the two-degree of freedom(TDF) PID controller is designed and its parameters are tuned using a real-coded genetic algorithm(RCGA). Simulation demonstrates the effectiveness of the proposed system.

  • PDF