• Title/Summary/Keyword: TD-EFIE

Search Result 2, Processing Time 0.015 seconds

Analysis of Transient Scattering from 3-Dimensional Arbitrarily Shaped Conducting Structures Using Magnetic Field Integral Equation (자장 적분방정식을 이용한 3 차원 임의 형태 도체 구조의 지연 산란 해석)

  • 정백호;김채영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4B
    • /
    • pp.379-387
    • /
    • 2002
  • In this paper, we present a procedure to obtain the transient scattering response from three-dimensional arbitrarily shaped and closed conducting bodies using time-domain magnetic field integral equation (TD-MFIE) with triangular patch functions. This approach results in accurate and comparably stable transient responses from conducting scatterers. Detailed mathematical steps are included, and several numerical results are presented and compared with results from a time-domain electric field integral equation (TD-EFIE) and the inverse courier transform solution of the frequency domain results.

Time-Domain Electric Field Integral Equation Solving for a Stable Solution of Electromagnetic Transient Scattering (안정된 전자파 과도 산란해를 얻기 위한 시간영역 전장 적분방정식 해석)

  • Jeong, Baek-Ho;Kim, Chae-Yeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.4
    • /
    • pp.201-208
    • /
    • 2002
  • In this paper, we present a new formulation using time-domain electric field integral equation (TD-EFIE) to obtain transient scattering response from arbitrarily shaped three-dimensional conducting bodies. The time derivative of the magnetic vector potential is approximated with a central finite difference and the scalar potential is time averaged by dividing it into two terms. This approach with an implicit method using central difference results in accurate and more stable transient scattering responses from conducting objects. Detailed mathematical steps are included and several numerical results are presented and compared with the inverse discrete Fourier transform (IDFT) of the frequency-domain solution.