• Title/Summary/Keyword: TCU

Search Result 51, Processing Time 0.017 seconds

Analysis of Diagnosis and Failsafe Algorithm Using Transmission Simulator (변속기 시뮬레이터를 이용한 진단 및 안전작동 알고리즘 분석)

  • Jung, Gyuhong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.89-97
    • /
    • 2014
  • As the digital control technologies in automotive industry have advanced, electronic control units(ECUs) play a key-role to improve system performance. Transmission control unit(TCU) is a shifting controller for automatic transmission of which major functions are to determine the shift and manage the shifting process considering the various sensor signal on transmission and driver's commands. As with any ECU in vehicle, TCU performs complex algorithms such as shift control, diagnostic and failsafe functions. However, firmware design analysis is hardly possible by the reverse engineering due to code protection. Transmission simulator is a hardware-in-the-loop simulator which enables TCU to work in normal mode by simulating the electrical signal of TCU interface. In this research, diagnosis and failsafe algorithm implemented on commercialized TCU is analyzed by using the transmission simulator that is developed for wheel loader construction vehicle. This paper gives various experimental results on the proportional solenoid current trajectories for different operating modes, error detection criterion and limphome mode gears for all the possible cases of clutch malfunction. The derived results for conventional TCU can be applied to the development of inherent TCU algorithms and the transmission simulator can also be utilized for the test of TCU to be developed.

Engineering Model Design and Implementation of Telemetry-Command Unit for STSAT-2 (과학기술위성 2호 원격검침-명령 유닛 시험모델 설계 및 구현)

  • Oh, Dae-Soo;Ryu, Chang-Wan;Nam, Myeong-Ryong;Hwang, Dong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.93-98
    • /
    • 2005
  • An Engineering Model(EM) of the Telemetry-Command Unit(TCU) for STSAT-2 was developed. The TCU of STSAT-2 has some improved features compared with that of STSAT-1. To reduce weight and size of TCU all logics are implemented in FPGA without CPU. EM I&T(Integration and Test) was successfully performed with no errors.

Development of an Automatic Transmission Simulator for a Wheel Loader (휠로더 자동변속기 시뮬레이터 개발)

  • Jung, G.H.;Shin, S.H.;Lee, S.I.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.2
    • /
    • pp.7-20
    • /
    • 2007
  • TCU is a shift controller far automatic transmission of which major functions are to determine the shift point and manage the shifting process based on the various input signals. As the recent digital control technologies advance, it plays a key-role to improve a transmission performance and its algorithm becomes more complicated. This paper describes the development of transmission simulator fur wheel loader that enables a TCU for normal stand-alone operation by the real-time emulation of TCU interface signals. It can be utilized for the analysis of shift control algorithm implemented in a commercial TCU as well as for the development of brand new TCU.

  • PDF

Diagnosis Design Using Embedded Transmission Simulator (임베디드 변속기 시뮬레이터를 이용한 진단알고리즘 설계)

  • Jung, G.H.;Kim, K.D.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.56-61
    • /
    • 2010
  • Simulator is a development equipment which enables the ECU to operate in normal mode by simulating the interface signal between ECU and mechanical system electrically. Embedded simulator means simulation function is embedded in ECU firmware, hence the electrical signal interface is replaced by the substitution of information at system program level. This paper explains the development of embedded transmission simulator for the verification of TCU firmware function which covers shifting control and on-board diagnosis. The embedded simulation program is executed in TCU processor along with the TCU firmware and it provides TCU firmware with not only the speed information those are appropriate both in driving and shifting conditions, but also the fault detection signals. Experimental results show that the validity of embedded simulator and its usefulness to the TCU firmware development and verification.

  • PDF

Analysis of Diagnosis Algorithm Implemented in TCU for High-Speed Tracked Vehicles (고속 무한궤도 차량용 변속제어기 진단 알고리즘 분석)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.30-38
    • /
    • 2018
  • Electronic control units (ECUs) are currently popular, and have evolved further towards the high-end application of autonomous vehicles in the automotive industry. Such digital technologies have also become widespread, in agriculture and construction equipment. Likewise, transmission control of high-speed tracked vehicles is based on the transmission control unit (TCU), performing complex gear change control functions, and diagnostic algorithms (a TCU's self-diagnostic and reporting capability of malfunction data through CAN communication). Since all functions of TCU are implemented by embedded-software, it is hardly possible to analyze specifications by reverse engineering. In this paper a real-time transmission simulator adaptable to TCU is presented, for analysis of diagnosis algorithm and standards. Signal simulation circuits are deliberately designed considering electrical characteristics of TCU inputs and various analysis tools, such as analog input auto scan function, and global output enable switch, are implemented in software. Test results from hardware-in-the-loop simulator verify tolerance time for each error, as well as cause of fault, error reset conditions.

Development of Integrated TCU for Multimedia Communication Devices Control (멀티미디어 통신기기 제어를 위한 통합 TCU 개발)

  • Lim, Yangmi;Kang, Namhi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.1-6
    • /
    • 2014
  • Companies almost don't use an integrated control system using expensive network system in multimedia like TV and DID, despite IP-Broadcasting and communication equipment have expanded rapidly. The proposed integrated TCU(terminal control unit) is a control device that supports TV power On/Off check and remote control, power control reservation function, TV channel change, a variety of interface supports of input/output AC power & Lan port, RS-232C and IR using existing IP network after there is installed the Wake-on -Lan in the set-top box. The TCU can control and monitor 24 hours unlike existing low-cost control system RF method. In existing control equipment markets without expandability and low price, the TCU development including 24 hours monitoring and automatic control functions is expected to secure a wide range of companies.

Thruster Control Unit 하우징, PCB의 정적 및 진동 해석

  • Kim, Ji-Hun;Jung, Ho-Lak;Jeon, Sang-Woon;Choi, Hyung-Don
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.124-132
    • /
    • 2004
  • This paper deals with the static and dynamic analysis of the housing and PCB of TCU(Thruster Control Unit) for KSLV-I(Korea Space Launch Vehicle-I). TCU should pass the environment test simulating the flight environment of KSLV-I. The most important tests are the vibration and the shock tests. In this research, we proposed a design standard about the vibration and the shock environment and then verified TCU housing and PCB design met the standard. Based on the analytical results, the TCU housing was redesigned to meet the design standard. The new design is supposed to pass the environment test.

  • PDF

A Research on Shifting Controller Development of a Automatic Transmission far Construction Vehicles (건설차량용 자동변속기의 변속제어기 개발연구)

  • 정규홍;이교일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.234-242
    • /
    • 2002
  • In this research, a transmission control unit was developed for a wheel loader on the basis of 16-bit microcontroller system. The TCU has the basic functions which include shifting control algorithm, actuation of six proportional solenoid valves, signal conditioning for four speed sensors, remote data monitoring capability with RF-module and duty cycle identification system which could identify the duty cycles from PWM signals. In order to design the control system, the overall transmission structure of the wheel loader was investigated and its characteristics of shifting were analyzed in advance. For the purpose of identifying the existing control algorithm and acquire some information about the shifting performance, the shifting experiments were performed for various shifting conditions with the conventional TCU. From the previous work on the conventional TCU, the shifting scheme was designed with the open-loop control which is based on the experimental data only to verify the feasibility of the developing TCU's shilling capability. The experimental results show comparable shifting characteristics to that of conventional TCU though the tests were performed at restricted shilling conditions. Hence, we could have the confidence for the development of the wheel loader automatic transmission TCU and its shifting quality could be improved with the adoption of appropriate feedback control scheme.

Development of Engineering Model for the Thruster Control Unit and Simulation system of the Reaction Control System (냉가스 추력기 시스템용 EM 제어기 및 점검 시스템 개발)

  • Jeon, Sang-Un;Kim, Ji-Hun;Jeong, Ho-Rak;Choe, Hyeong-Don
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.188-194
    • /
    • 2006
  • This paper deals with the development of Engineering Model for the TCU( Thruster Control Unit) and simulation system of the reaction control system using cold gas. TCU communicates with TLM(Telemetry) and ground control console so that it transmits monitoring data of pressures and temperatures for reaction control system. The cpu/communication board performs MIL-STD-1553B communication, RS-422 communication, data input/output processing and program loading to EEPROM. We applied Intel 80386DX Microprocessor, 256Kbytes EEPROM and 256Kbytes SRAM for program storage and execution. Also, we developed the direct access interface circuit to EEPROM and simulation system for TCU.

  • PDF

Development of Transmission Simulator for High-Speed Tracked Vehicles (고속 무한궤도 차량용 변속기 시뮬레이터 개발)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.29-36
    • /
    • 2017
  • Electronic control technologies that have long been developed for passenger cars spread to construction equipment and agricultural vehicles because of its outstanding performance achieved by embedded software. Especially, system program of transmission control unit (TCU) plays a crucial role for the superb shift quality, driving performance and fuel efficiency, etc. Since the control algorithm is embedded in software that is rarely analyzed, development of such a TCU cannot be conducted by conventional reverse engineering. Transmission simulator is a kind of electronic device that simulates the electric signals including driver operation command and output of various sensors installed in transmission. Standalone TCU can be run in normal operation mode with the signals provided by transmission simulator. In this research, transmission simulator for the tracked vehicle TCU is developed for the analysis of shift control algorithm from the experiments with standalone TCU. It was confirmed that shift experimental data for the simulator setup conditions can be used for the analysis of control algorithms on proportional solenoid valves and shift map.