• Title/Summary/Keyword: TCS traffic

Search Result 36, Processing Time 0.025 seconds

Analysis of Highway Traffic Indices Using Internet Search Data (검색 트래픽 정보를 활용한 고속도로 교통지표 분석 연구)

  • Ryu, Ingon;Lee, Jaeyoung;Park, Gyeong Chul;Choi, Keechoo;Hwang, Jun-Mun
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.1
    • /
    • pp.14-28
    • /
    • 2015
  • Numerous research has been conducted using internet search data since the mid-2000s. For example, Google Inc. developed a service predicting influenza patterns using the internet search data. The main objective of this study is to prove the hypothesis that highway traffic indices are similar to the internet search patterns. In order to achieve this objective, a model to predict the number of vehicles entering the expressway and space-mean speed was developed and the goodness-of-fit of the model was assessed. The results revealed several findings. First, it was shown that the Google search traffic was a good predictor for the TCS entering traffic volume model at sites with frequent commute trips, and it had a negative correlation with the TCS entering traffic volume. Second, the Naver search traffic was utilized for the TCS entering traffic volume model at sites with numerous recreational trips, and it was positively correlated with the TCS entering traffic volume. Third, it was uncovered that the VDS speed had a negative relationship with the search traffic on the time series diagram. Lastly, it was concluded that the transfer function noise time series model showed the better goodness-of-fit compared to the other time series model. It is expected that "Big Data" from the internet search data can be extensively applied in the transportation field if the sources of search traffic, time difference and aggregation units are explored in the follow-up studies.

Analysis of Diversion Rate using Expressway Traffic Data(FTMS, TCS): Focusing on Maesong~Balan IC at Seohaean Expressway (고속도로 교통데이터(FTMS, TCS)를 이용한 경로전환율 분석: 서해안고속도로 매송~발안 구간을 중심으로)

  • Ko, Han-Geom;Choi, Yoon-Hyuk;Oh, Young-Tae;Choi, Kee-Choo
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.3
    • /
    • pp.31-41
    • /
    • 2012
  • Due to growing interests in the distribution of traffic volume through information dissemination such as VMS and traffic broadcasting system, the research on the driver's reaction and effect of the traffic report has continued. In this study, we propose a methodology, which estimates the traffic volume of diversion and the consequential diversion rate using FTMS data and TCS data, and the estimation is based on the analysis of the national highway and IC, in which real-time FTMS and TCS data are established. We also calculate the diversion rate of actual targeted sections and analyze the changes in time and spatial diversion rate. In this study, we define a deviation (considering a deviation due to dynamic properties of traffic conditions) found when the outflow traffic volume is temporarily higher than the average outflow traffic volume on a relevant time slot after providing traffic information. The diverting volume is considered to be caused by the traffic information, and the study determines the ratio of traffic volume on highways to that of route diversion as the diversion rate. The analysis on changes in the diversion rate in accordance with the time flow, the initial change in the diversion rate on upstream IC that first acquires the report on the traffic congestion is significant. After that, the change in the diversion rate on upstream IC affects the route diversion on downstream IC with spatial and time flow, and this again leads the change in upstream IC. Thereby, we confirmed that there is a feedback-control circulation system in the route diversion.

Estimation of Optimal Passenger Car Equivalents of TCS Vehicle Types for Expressway Travel Demand Models Using a Genetic Algorithm (고속도로 교통수요모형 구축을 위한 유전자 알고리즘 기반 TCS 차종별 최적 승용차환산계수 산정)

  • Kim, Kyung Hyun;Yoon, Jung Eun;Park, Jaebeom;Nam, Seung Tae;Ryu, Jong Deug;Yun, Ilsoo
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.97-105
    • /
    • 2015
  • PURPOSES : The Toll Collection System (TCS) operated by the Korea Expressway Corporation provides accurate traffic counts between tollgates within the expressway network under the closed-type toll collection system. However, although origin-destination (OD) matrices for a travel demand model can be constructed using these traffic counts, these matrices cannot be directly applied because it is technically difficult to determine appropriate passenger car equivalent (PCE) values for the vehicle types used in TCS. Therefore, this study was initiated to systematically determine the appropriate PCE values of TCS vehicle types for the travel demand model. METHODS : To search for the appropriate PCE values of TCS vehicle types, a traffic demand model based on TCS-based OD matrices and the expressway network was developed. Using the traffic demand model and a genetic algorithm, the appropriate PCE values were optimized through an approach that minimizes errors between actual link counts and estimated link volumes. RESULTS : As a result of the optimization, the optimal PCE values of TCS vehicle types 1 and 5 were determined to be 1 and 3.7, respectively. Those of TCS vehicle types 2 through 4 are found in the manual for the preliminary feasibility study. CONCLUSIONS : Based on the given vehicle delay functions and network properties (i.e., speeds and capacities), the travel demand model with the optimized PCE values produced a MAPE value of 37.7%, RMSE value of 17124.14, and correlation coefficient of 0.9506. Conclusively, the optimized PCE values were revealed to produce estimates of expressway link volumes sufficiently close to actual link counts.

Integrated Railway Signaling Systems for Laboratory Testing of Next-generation High-speed Train (한국형 고속전철용 신호시스템의 실험실 시험을 위한 통합 신호시스템)

  • Hwang, Jong-Gyu;Lee, Jong-Woo;Park, Yong-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.1
    • /
    • pp.32-39
    • /
    • 2004
  • Railway signaling systems consist of several vital computerized equipment such as CTC(Centralized Traffic Control), EIS(Electronic Interlocking System), ATC(Automatic Train Control) and so on. Currently, the project for development of railway signaling systems for the next-generation high-speed train is progressed according to the G7 project and railway signaling related several companies and research institute are joined this project consortium. The railway signaling systems, being developed in this project, called as a kTCS(Korean Train Control System), is composed of kTCS-CTC, kTCS-IXL, kTCS-ATC and etc. kTCS signaling systems have to be operated at the laboratory testing level as integrated signaling systems by interface between each railway signaling systems before railway field installation and revenue service. To solve this matter, communication protocols between each signaling equipment are designed and message codes for each defined protocols have defined. And also several equipment has developed for the railway integrated signaling systems for laboratory testing. We has plentifully tested and verified the designed protocols and the characteristics of integrated railway signaling systems with our developed each kTCS signaling equipment and communication protocols. In this paper, the integrated kTCS system including communication protocols is presented.

An Approach for Estimating Traffic-Zonal Origin-Destination Matrices(O-D) from Toll Collection System's Ones (고속도로 영업소간 기.종점통행량으로부터 교통죤간 기.종점통행량 추정기법 연구)

  • 신언교;황부연;신승원
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.1
    • /
    • pp.7-17
    • /
    • 1999
  • The expressway network includes a total of about 1,899 km in our country The only 1,016 km of that is being managed by the closed Toll Collection System(TCS) which is composed of 74 tollgates. We obtain inter-tollgate O-D matrices from that system everyday. But, they are not traffic-zonal O-D matrices. So they have not been used for the expressway traffic analysis and the traffic demand estimation despite of their accuracy. If we could estimate the traffic-zonal O-D matrices from TCS O-D ones, we could perform expressway traffic analysis more efficiently. Moreover we could obtain more precise expressway O-D matrices and traffic-zonal O/D ones by this approach than by the conventional ones. In this paper. we proposed the model estimating traffic-zonal O/D matrices from TCS O-D ones. The assigned volumes with the estimated traffic-zonal O-D matrices produced the only 17.9% error all over the TCS expressway section when compared to the real traffic volumes. So, the proposed model enables for us to estimate more accurate O/D matrics than any other existing methods.

  • PDF

Construction of vehicle classification estimation model from the TCS data by using bootstrap Algorithm (붓스트랩 기법을 이용한 TCS 데이터로부터 차종별 교통량 추정모형 구축)

  • 노정현;김태균;차경준;박영선;남궁성;황부연
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.1
    • /
    • pp.39-52
    • /
    • 2002
  • Traffic data by vehicle classification is difficult for mutual exchange of data due to the different vehicle classification from each other by the data sources; as a result, application of the data is very limited. In Particular. in case of TCS vehicle classification in national highways, passenger car, van and truck are mixed in one category and the practical usage is very low. The research standardize the vehicle classification to convert other data and develop the model which can estimate national highway traffic data by the standardized vehicle classification from the raw traffic data obtained at the highway tollgates. The tollgates are categorized into several groups by their features and the model estimates traffic data by the standardized vehicle classification by using the point estimation and bootstrap algorithm. The result indicates that both of the two methods above have the significant level. When considering the bias of the extreme value by the sample size, the bootstrap algorithm is more sophisticated. Using result of this study, we is expect the usage improvement of TCS data and more specific comparison between the freeway traffic investigation and link volume on freeway using the TCS data.

Outlier Filtering and Missing Data Imputation Algorithm using TCS Data (TCS데이터를 이용한 이상치제거 및 결측보정 알고리즘 개발)

  • Do, Myung-Sik;Lee, Hyang-Mee;NamKoong, Seong
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.241-250
    • /
    • 2008
  • With the ever-growing amount of traffic, there is an increasing need for good quality travel time information. Various existing outlier filtering and missing data imputation algorithms using AVI data for interrupted and uninterrupted traffic flow have been proposed. This paper is devoted to development of an outlier filtering and missing data imputation algorithm by using Toll Collection System (TCS) data. TCS travel time data collected from August to September 2007 were employed. Travel time data from TCS are made out of records of every passing vehicle; these data have potential for providing real-time travel time information. However, the authors found that as the distance between entry tollgates and exit tollgates increases, the variance of travel time also increases. Also, time gaps appeared in the case of long distances between tollgates. Finally, the authors propose a new method for making representative values after removal of abnormal and "noise" data and after analyzing existing methods. The proposed algorithm is effective.

Correction of Measured Traffic Volume on Expressways Using Optimization Model (최적화 모형을 이용한 고속도로 측정교통량 보정)

  • Kim, Dong ho;Park, Dong joo;Kim, Do gyeong;Shin, Seung jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.41-53
    • /
    • 2018
  • This study developed the optimization method to correct the measured traffic volume of the expressway that minimizes the measurement error and satisfies the traffic balancing with TCS. For this purpose, the model constructed in this study was compared and verified with the true traffic volume. Verification result of the model, it was found that the measurement error is reduced when the measured traffic volume is corrected for the traffic volume balance. As a result of applying it to 40 links of the Kyoungbu expressway, the measured traffic volume was corrected by -8.1%~9.6% and the measurement error was decreased as much as the corrected traffic volume. This research is meaningful in improving the accuracy of the measured traffic volume of the expressway, while the scale and role of the expressway are increasing.

Development and Analysis of the Interchange Centrality Evaluation Index Using Network Analysis (네트워크 분석을 이용한 거점평가지표 개발 및 특성분석)

  • KIM, Suhyun;PARK, Seungtae;WOO, Sunhee;LEE, Seungchul
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.6
    • /
    • pp.525-544
    • /
    • 2017
  • With the advent of the big data era, the interest in the development of land using traffic data has increased significantly. However, the current research on traffic big data lingers around organizing or calibrating the data only. In this research, a novel method for discovering the hidden values within the traffic data through data mining is proposed. Considering the fact that traffic data and network structures have similarities, network analysis algorithms are used to find valuable information in the actual traffic volume data. The PageRank and HITS algorithms are then employed to find the centralities. While conventional methods present centralities based on uncomplicated traffic volume data, the proposed method provides more reasonable centrality locations through network analysis. Since the centrality locations that we have found carry detailed spatiotemporal characteristics, such information can be used as an objective basis for making policy decisions.

Exploring the Temporal Relationship Between Traffic Information Web/Mobile Application Access and Actual Traffic Volume on Expressways (웹/모바일-어플리케이션 접속 지표와 TCS 교통량의 상관관계 연구)

  • RYU, Ingon;LEE, Jaeyoung;CHOI, Keechoo;KIM, Junghwa;AHN, Soonwook
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2016
  • In the recent years, the internet has become accessible without limitation of time and location to anyone with smartphones. It resulted in more convenient travel information access both on the pre-trip and en-route phase. The main objective of this study is to conduct a stationary test for traffic information web/mobile application access indexes from TCS (Toll Collection System); and analyzing the relationship between the web/mobile application access indexes and actual traffic volume on expressways, in order to analyze searching behavior of expressway related travel information. The key findings of this study are as follows: first, the results of ADF-test and PP-test confirm that the web/mobile application access indexes by time periods satisfy stationary conditions even without log or differential transformation. Second, the Pearson correlation test showed that there is a strong and positive correlation between the web/mobile application access indexes and expressway entry and exit traffic volume. In contrast, truck entry traffic volume from TCS has no significant correlation with the web/mobile application access indexes. Third, the time gap relationship between time-series variables (i.e., concurrent, leading and lagging) was analyzed by cross-correlation tests. The results indicated that the mobile application access leads web access, and the number of mobile application execution is concurrent with all web access indexes. Lastly, there was no web/mobile application access indexes leading expressway entry traffic volumes on expressways, and the highest correlation was observed between webpage view/visitor/new visitor/repeat visitor/application execution counts and expressway entry volume with a lag of one hour. It is expected that specific individual travel behavior can be predicted such as route conversion time and ratio if the data are subdivided by time periods and areas and utilizing traffic information users' location.