• Title/Summary/Keyword: TCS 교통량

Search Result 24, Processing Time 0.02 seconds

Construction of vehicle classification estimation model from the TCS data by using bootstrap Algorithm (붓스트랩 기법을 이용한 TCS 데이터로부터 차종별 교통량 추정모형 구축)

  • 노정현;김태균;차경준;박영선;남궁성;황부연
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.1
    • /
    • pp.39-52
    • /
    • 2002
  • Traffic data by vehicle classification is difficult for mutual exchange of data due to the different vehicle classification from each other by the data sources; as a result, application of the data is very limited. In Particular. in case of TCS vehicle classification in national highways, passenger car, van and truck are mixed in one category and the practical usage is very low. The research standardize the vehicle classification to convert other data and develop the model which can estimate national highway traffic data by the standardized vehicle classification from the raw traffic data obtained at the highway tollgates. The tollgates are categorized into several groups by their features and the model estimates traffic data by the standardized vehicle classification by using the point estimation and bootstrap algorithm. The result indicates that both of the two methods above have the significant level. When considering the bias of the extreme value by the sample size, the bootstrap algorithm is more sophisticated. Using result of this study, we is expect the usage improvement of TCS data and more specific comparison between the freeway traffic investigation and link volume on freeway using the TCS data.

Analysis of Highway Traffic Indices Using Internet Search Data (검색 트래픽 정보를 활용한 고속도로 교통지표 분석 연구)

  • Ryu, Ingon;Lee, Jaeyoung;Park, Gyeong Chul;Choi, Keechoo;Hwang, Jun-Mun
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.1
    • /
    • pp.14-28
    • /
    • 2015
  • Numerous research has been conducted using internet search data since the mid-2000s. For example, Google Inc. developed a service predicting influenza patterns using the internet search data. The main objective of this study is to prove the hypothesis that highway traffic indices are similar to the internet search patterns. In order to achieve this objective, a model to predict the number of vehicles entering the expressway and space-mean speed was developed and the goodness-of-fit of the model was assessed. The results revealed several findings. First, it was shown that the Google search traffic was a good predictor for the TCS entering traffic volume model at sites with frequent commute trips, and it had a negative correlation with the TCS entering traffic volume. Second, the Naver search traffic was utilized for the TCS entering traffic volume model at sites with numerous recreational trips, and it was positively correlated with the TCS entering traffic volume. Third, it was uncovered that the VDS speed had a negative relationship with the search traffic on the time series diagram. Lastly, it was concluded that the transfer function noise time series model showed the better goodness-of-fit compared to the other time series model. It is expected that "Big Data" from the internet search data can be extensively applied in the transportation field if the sources of search traffic, time difference and aggregation units are explored in the follow-up studies.

3-Dimensional Balancing Technique for Nationwide Travel Demand Model using Toll Collecting System Data (3-D 기법을 이용한 TCS기반 전국 교통수요 추정 연구)

  • 이승재;이헌주
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.63-72
    • /
    • 2002
  • We applied 3-D balancing technique to estimate nationwide travel demand using travel behavior of Toll Collecting System data, socio-economic data in the region, and the data of several organizations connected with travel demand estimation. The results from this study were validated by the indices of RMSE(Root Mean Square Error), TLFD(Trip Length Frequency Distribution). TCS based inter-city average travel to measure of reliability and adequacy of estimated travel demand. Finally, 3-D technique seems to reflect more travel behavior of TCS OD than 2-D technique, but we cannot assert that 3-D technique superior to 2-D technique.

Correction of Measured Traffic Volume on Expressways Using Optimization Model (최적화 모형을 이용한 고속도로 측정교통량 보정)

  • Kim, Dong ho;Park, Dong joo;Kim, Do gyeong;Shin, Seung jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.41-53
    • /
    • 2018
  • This study developed the optimization method to correct the measured traffic volume of the expressway that minimizes the measurement error and satisfies the traffic balancing with TCS. For this purpose, the model constructed in this study was compared and verified with the true traffic volume. Verification result of the model, it was found that the measurement error is reduced when the measured traffic volume is corrected for the traffic volume balance. As a result of applying it to 40 links of the Kyoungbu expressway, the measured traffic volume was corrected by -8.1%~9.6% and the measurement error was decreased as much as the corrected traffic volume. This research is meaningful in improving the accuracy of the measured traffic volume of the expressway, while the scale and role of the expressway are increasing.

Analysis of Diversion Rate using Expressway Traffic Data(FTMS, TCS): Focusing on Maesong~Balan IC at Seohaean Expressway (고속도로 교통데이터(FTMS, TCS)를 이용한 경로전환율 분석: 서해안고속도로 매송~발안 구간을 중심으로)

  • Ko, Han-Geom;Choi, Yoon-Hyuk;Oh, Young-Tae;Choi, Kee-Choo
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.3
    • /
    • pp.31-41
    • /
    • 2012
  • Due to growing interests in the distribution of traffic volume through information dissemination such as VMS and traffic broadcasting system, the research on the driver's reaction and effect of the traffic report has continued. In this study, we propose a methodology, which estimates the traffic volume of diversion and the consequential diversion rate using FTMS data and TCS data, and the estimation is based on the analysis of the national highway and IC, in which real-time FTMS and TCS data are established. We also calculate the diversion rate of actual targeted sections and analyze the changes in time and spatial diversion rate. In this study, we define a deviation (considering a deviation due to dynamic properties of traffic conditions) found when the outflow traffic volume is temporarily higher than the average outflow traffic volume on a relevant time slot after providing traffic information. The diverting volume is considered to be caused by the traffic information, and the study determines the ratio of traffic volume on highways to that of route diversion as the diversion rate. The analysis on changes in the diversion rate in accordance with the time flow, the initial change in the diversion rate on upstream IC that first acquires the report on the traffic congestion is significant. After that, the change in the diversion rate on upstream IC affects the route diversion on downstream IC with spatial and time flow, and this again leads the change in upstream IC. Thereby, we confirmed that there is a feedback-control circulation system in the route diversion.

A Study of Data Preprocessing Algorithm Using TCS/HI-PASS Data (TCS/HI-PASS 데이터를 이용한 전처리 알고리즘 구현에 관한 연구)

  • Jeong, Hyeon-Seok;Oh, Sang-Seok;Min, Sung-Gi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.1005-1008
    • /
    • 2011
  • 본 논문에서는 교통 이력자료의 시공간 데이터를 활용하여 교통 분석 및 예측에 필요한 신뢰성 높은 데이터를 제공하기 위한 TCS/HI-PASS 전처리 알고리즘을 제안한다. 시공간 데이터의 전처리 알고리즘은 각종 교통정보에 이용되고 있으며, 그 중 대표적으로 활용되고 있는 것이 차량 검지기(VDS)를 통해 수집된 교통량, 속도, 점유율 정보이다. 이러한 정보에 가공처리 알고리즘을 적용하여 공간평균속도 기반의 통행시간을 산정하고 있으며, 고속도로 통행료 수납시스템(TCS)으로 부터는 출발영업소와 도착영업소의 진 출입시간을 기반으로 평균통행시간을 산정하고 있다. 본 연구에서는 차량 검지기(VDS) 데이터와 기존 TCS 데이터의 전처리 알고리즘을 분석하여 TCS와 HI-PASS 데이터 기반의 개선된 전처리 알고리즘을 설계, 구현하였다.

Expressway Travel Time Prediction Using K-Nearest Neighborhood (KNN 알고리즘을 활용한 고속도로 통행시간 예측)

  • Shin, Kangwon;Shim, Sangwoo;Choi, Keechoo;Kim, Soohee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1873-1879
    • /
    • 2014
  • There are various methodologies to forecast the travel time using real-time data but the K-nearest neighborhood (KNN) method in general is regarded as the most one in forecasting when there are enough historical data. The objective of this study is to evaluate applicability of KNN method. In this study, real-time and historical data of toll collection system (TCS) traffic flow and the dedicated short range communication (DSRC) link travel time, and the historical path travel time data are used as input data for KNN approach. The proposed method investigates the path travel time which is the nearest to TCS traffic flow and DSRC link travel time from real-time and historical data, then it calculates the predicted path travel time using weight average method. The results show that accuracy increased when weighted value of DSRC link travel time increases. Moreover the trend of forecasted and real travel times are similar. In addition, the error in forecasted travel time could be further reduced when more historical data could be available in the future database.

An Approach for Estimating Traffic-Zonal Origin-Destination Matrices(O-D) from Toll Collection System's Ones (고속도로 영업소간 기.종점통행량으로부터 교통죤간 기.종점통행량 추정기법 연구)

  • 신언교;황부연;신승원
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.1
    • /
    • pp.7-17
    • /
    • 1999
  • The expressway network includes a total of about 1,899 km in our country The only 1,016 km of that is being managed by the closed Toll Collection System(TCS) which is composed of 74 tollgates. We obtain inter-tollgate O-D matrices from that system everyday. But, they are not traffic-zonal O-D matrices. So they have not been used for the expressway traffic analysis and the traffic demand estimation despite of their accuracy. If we could estimate the traffic-zonal O-D matrices from TCS O-D ones, we could perform expressway traffic analysis more efficiently. Moreover we could obtain more precise expressway O-D matrices and traffic-zonal O/D ones by this approach than by the conventional ones. In this paper. we proposed the model estimating traffic-zonal O/D matrices from TCS O-D ones. The assigned volumes with the estimated traffic-zonal O-D matrices produced the only 17.9% error all over the TCS expressway section when compared to the real traffic volumes. So, the proposed model enables for us to estimate more accurate O/D matrics than any other existing methods.

  • PDF

Exploring the Temporal Relationship Between Traffic Information Web/Mobile Application Access and Actual Traffic Volume on Expressways (웹/모바일-어플리케이션 접속 지표와 TCS 교통량의 상관관계 연구)

  • RYU, Ingon;LEE, Jaeyoung;CHOI, Keechoo;KIM, Junghwa;AHN, Soonwook
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2016
  • In the recent years, the internet has become accessible without limitation of time and location to anyone with smartphones. It resulted in more convenient travel information access both on the pre-trip and en-route phase. The main objective of this study is to conduct a stationary test for traffic information web/mobile application access indexes from TCS (Toll Collection System); and analyzing the relationship between the web/mobile application access indexes and actual traffic volume on expressways, in order to analyze searching behavior of expressway related travel information. The key findings of this study are as follows: first, the results of ADF-test and PP-test confirm that the web/mobile application access indexes by time periods satisfy stationary conditions even without log or differential transformation. Second, the Pearson correlation test showed that there is a strong and positive correlation between the web/mobile application access indexes and expressway entry and exit traffic volume. In contrast, truck entry traffic volume from TCS has no significant correlation with the web/mobile application access indexes. Third, the time gap relationship between time-series variables (i.e., concurrent, leading and lagging) was analyzed by cross-correlation tests. The results indicated that the mobile application access leads web access, and the number of mobile application execution is concurrent with all web access indexes. Lastly, there was no web/mobile application access indexes leading expressway entry traffic volumes on expressways, and the highest correlation was observed between webpage view/visitor/new visitor/repeat visitor/application execution counts and expressway entry volume with a lag of one hour. It is expected that specific individual travel behavior can be predicted such as route conversion time and ratio if the data are subdivided by time periods and areas and utilizing traffic information users' location.

Calculating Social Benefit in Travel Time Considering Seasonal and Daily Variation in Traffic Pattern (계절별 요일별 교통패턴 변동을 반영한 연통행시간 편익산출)

  • Han, Khun-Soo;Baek, Seung-Kirl;Kim, Ik-Ki
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.17-23
    • /
    • 2004
  • 교통정책을 평가하기 위해 기본적으로 요구되는 Data 중 가장 근본이 되는 것이 OD이다. 기존의 교통정책을 평가함에 있어서 일반적으로 사용되고 있는 OD는 AADT(Annual Average Daily Traffic) OD이다. 계절별 평일/주말 교통량의 분산이 매우 크다는 것은 기존 조사나 연구로 익히 알려진 사실이며, 또한 사회 경제적인 여건의 변화 및 주 5일제 근무제의 시행 등으로 여가통행의 비중이 높아짐에 따라 평일과 주말의 교통량의 분산은 더욱 커질 것으로 예상된다. 따라서 교통정책을 평가하는 방법도 AADT OD의 일률적인 적용이 아닌 교통량의 계절별 평일/주말의 분산을 적용시킨 OD를 가지고 교통정책을 평가하는 방법이 교통정책을 결정함에 있어 오류를 범할 가능성을 적게 될 것으로 예상된다. 기존 연구에서는 이러한 교통량의 분산의 보정을 지점교통량에 한정하여 보정하고 있어 실질적인 네트워크 분석에 적용하기에는 무리가 있다. 이에 본 연구에서는 관측된 TCS Data를 이용하여 계절별 평일/주말의 OD 교통 패턴을 분석하여 계절별 평일/주말의 OD 교통패턴을 반영할 수 있는 보정계수를 산출하고 산출된 보정계수에 따라 AADT OD를 보정하여 네트워크 분석의 기초 자료를 구축하였다. 수정된 OD 교통량의 검증을 위하여 기존의 AADT OD의 인구당 통행발생비율과 계절별 평일/주말 OD의 통행발생량을 비교하였다. 그 결과 소수점 두 자리수에서 오차가 발생하여 비교적 합리적인 OD가 추정되었다. 또한 기존의 AADT OD를 이용하여 정책 결정을 할 때의 오류 가능성을 보이기 위하여 각 계절별 평일/주말 OD 교통량과 기존의 AADT OD를 입력 자료로 각각의 네트워크 분석 후 총통행시간의 차이를 분석하였다. 그 결과 정책 결정에 영향을 미칠 수 있을 정도의 차이가 있는 것으로 분석되었다.