Traffic data by vehicle classification is difficult for mutual exchange of data due to the different vehicle classification from each other by the data sources; as a result, application of the data is very limited. In Particular. in case of TCS vehicle classification in national highways, passenger car, van and truck are mixed in one category and the practical usage is very low. The research standardize the vehicle classification to convert other data and develop the model which can estimate national highway traffic data by the standardized vehicle classification from the raw traffic data obtained at the highway tollgates. The tollgates are categorized into several groups by their features and the model estimates traffic data by the standardized vehicle classification by using the point estimation and bootstrap algorithm. The result indicates that both of the two methods above have the significant level. When considering the bias of the extreme value by the sample size, the bootstrap algorithm is more sophisticated. Using result of this study, we is expect the usage improvement of TCS data and more specific comparison between the freeway traffic investigation and link volume on freeway using the TCS data.
Numerous research has been conducted using internet search data since the mid-2000s. For example, Google Inc. developed a service predicting influenza patterns using the internet search data. The main objective of this study is to prove the hypothesis that highway traffic indices are similar to the internet search patterns. In order to achieve this objective, a model to predict the number of vehicles entering the expressway and space-mean speed was developed and the goodness-of-fit of the model was assessed. The results revealed several findings. First, it was shown that the Google search traffic was a good predictor for the TCS entering traffic volume model at sites with frequent commute trips, and it had a negative correlation with the TCS entering traffic volume. Second, the Naver search traffic was utilized for the TCS entering traffic volume model at sites with numerous recreational trips, and it was positively correlated with the TCS entering traffic volume. Third, it was uncovered that the VDS speed had a negative relationship with the search traffic on the time series diagram. Lastly, it was concluded that the transfer function noise time series model showed the better goodness-of-fit compared to the other time series model. It is expected that "Big Data" from the internet search data can be extensively applied in the transportation field if the sources of search traffic, time difference and aggregation units are explored in the follow-up studies.
We applied 3-D balancing technique to estimate nationwide travel demand using travel behavior of Toll Collecting System data, socio-economic data in the region, and the data of several organizations connected with travel demand estimation. The results from this study were validated by the indices of RMSE(Root Mean Square Error), TLFD(Trip Length Frequency Distribution). TCS based inter-city average travel to measure of reliability and adequacy of estimated travel demand. Finally, 3-D technique seems to reflect more travel behavior of TCS OD than 2-D technique, but we cannot assert that 3-D technique superior to 2-D technique.
Kim, Dong ho;Park, Dong joo;Kim, Do gyeong;Shin, Seung jin
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.17
no.4
/
pp.41-53
/
2018
This study developed the optimization method to correct the measured traffic volume of the expressway that minimizes the measurement error and satisfies the traffic balancing with TCS. For this purpose, the model constructed in this study was compared and verified with the true traffic volume. Verification result of the model, it was found that the measurement error is reduced when the measured traffic volume is corrected for the traffic volume balance. As a result of applying it to 40 links of the Kyoungbu expressway, the measured traffic volume was corrected by -8.1%~9.6% and the measurement error was decreased as much as the corrected traffic volume. This research is meaningful in improving the accuracy of the measured traffic volume of the expressway, while the scale and role of the expressway are increasing.
Due to growing interests in the distribution of traffic volume through information dissemination such as VMS and traffic broadcasting system, the research on the driver's reaction and effect of the traffic report has continued. In this study, we propose a methodology, which estimates the traffic volume of diversion and the consequential diversion rate using FTMS data and TCS data, and the estimation is based on the analysis of the national highway and IC, in which real-time FTMS and TCS data are established. We also calculate the diversion rate of actual targeted sections and analyze the changes in time and spatial diversion rate. In this study, we define a deviation (considering a deviation due to dynamic properties of traffic conditions) found when the outflow traffic volume is temporarily higher than the average outflow traffic volume on a relevant time slot after providing traffic information. The diverting volume is considered to be caused by the traffic information, and the study determines the ratio of traffic volume on highways to that of route diversion as the diversion rate. The analysis on changes in the diversion rate in accordance with the time flow, the initial change in the diversion rate on upstream IC that first acquires the report on the traffic congestion is significant. After that, the change in the diversion rate on upstream IC affects the route diversion on downstream IC with spatial and time flow, and this again leads the change in upstream IC. Thereby, we confirmed that there is a feedback-control circulation system in the route diversion.
Proceedings of the Korea Information Processing Society Conference
/
2011.11a
/
pp.1005-1008
/
2011
본 논문에서는 교통 이력자료의 시공간 데이터를 활용하여 교통 분석 및 예측에 필요한 신뢰성 높은 데이터를 제공하기 위한 TCS/HI-PASS 전처리 알고리즘을 제안한다. 시공간 데이터의 전처리 알고리즘은 각종 교통정보에 이용되고 있으며, 그 중 대표적으로 활용되고 있는 것이 차량 검지기(VDS)를 통해 수집된 교통량, 속도, 점유율 정보이다. 이러한 정보에 가공처리 알고리즘을 적용하여 공간평균속도 기반의 통행시간을 산정하고 있으며, 고속도로 통행료 수납시스템(TCS)으로 부터는 출발영업소와 도착영업소의 진 출입시간을 기반으로 평균통행시간을 산정하고 있다. 본 연구에서는 차량 검지기(VDS) 데이터와 기존 TCS 데이터의 전처리 알고리즘을 분석하여 TCS와 HI-PASS 데이터 기반의 개선된 전처리 알고리즘을 설계, 구현하였다.
KSCE Journal of Civil and Environmental Engineering Research
/
v.34
no.6
/
pp.1873-1879
/
2014
There are various methodologies to forecast the travel time using real-time data but the K-nearest neighborhood (KNN) method in general is regarded as the most one in forecasting when there are enough historical data. The objective of this study is to evaluate applicability of KNN method. In this study, real-time and historical data of toll collection system (TCS) traffic flow and the dedicated short range communication (DSRC) link travel time, and the historical path travel time data are used as input data for KNN approach. The proposed method investigates the path travel time which is the nearest to TCS traffic flow and DSRC link travel time from real-time and historical data, then it calculates the predicted path travel time using weight average method. The results show that accuracy increased when weighted value of DSRC link travel time increases. Moreover the trend of forecasted and real travel times are similar. In addition, the error in forecasted travel time could be further reduced when more historical data could be available in the future database.
The expressway network includes a total of about 1,899 km in our country The only 1,016 km of that is being managed by the closed Toll Collection System(TCS) which is composed of 74 tollgates. We obtain inter-tollgate O-D matrices from that system everyday. But, they are not traffic-zonal O-D matrices. So they have not been used for the expressway traffic analysis and the traffic demand estimation despite of their accuracy. If we could estimate the traffic-zonal O-D matrices from TCS O-D ones, we could perform expressway traffic analysis more efficiently. Moreover we could obtain more precise expressway O-D matrices and traffic-zonal O/D ones by this approach than by the conventional ones. In this paper. we proposed the model estimating traffic-zonal O/D matrices from TCS O-D ones. The assigned volumes with the estimated traffic-zonal O-D matrices produced the only 17.9% error all over the TCS expressway section when compared to the real traffic volumes. So, the proposed model enables for us to estimate more accurate O/D matrics than any other existing methods.
In the recent years, the internet has become accessible without limitation of time and location to anyone with smartphones. It resulted in more convenient travel information access both on the pre-trip and en-route phase. The main objective of this study is to conduct a stationary test for traffic information web/mobile application access indexes from TCS (Toll Collection System); and analyzing the relationship between the web/mobile application access indexes and actual traffic volume on expressways, in order to analyze searching behavior of expressway related travel information. The key findings of this study are as follows: first, the results of ADF-test and PP-test confirm that the web/mobile application access indexes by time periods satisfy stationary conditions even without log or differential transformation. Second, the Pearson correlation test showed that there is a strong and positive correlation between the web/mobile application access indexes and expressway entry and exit traffic volume. In contrast, truck entry traffic volume from TCS has no significant correlation with the web/mobile application access indexes. Third, the time gap relationship between time-series variables (i.e., concurrent, leading and lagging) was analyzed by cross-correlation tests. The results indicated that the mobile application access leads web access, and the number of mobile application execution is concurrent with all web access indexes. Lastly, there was no web/mobile application access indexes leading expressway entry traffic volumes on expressways, and the highest correlation was observed between webpage view/visitor/new visitor/repeat visitor/application execution counts and expressway entry volume with a lag of one hour. It is expected that specific individual travel behavior can be predicted such as route conversion time and ratio if the data are subdivided by time periods and areas and utilizing traffic information users' location.
교통정책을 평가하기 위해 기본적으로 요구되는 Data 중 가장 근본이 되는 것이 OD이다. 기존의 교통정책을 평가함에 있어서 일반적으로 사용되고 있는 OD는 AADT(Annual Average Daily Traffic) OD이다. 계절별 평일/주말 교통량의 분산이 매우 크다는 것은 기존 조사나 연구로 익히 알려진 사실이며, 또한 사회 경제적인 여건의 변화 및 주 5일제 근무제의 시행 등으로 여가통행의 비중이 높아짐에 따라 평일과 주말의 교통량의 분산은 더욱 커질 것으로 예상된다. 따라서 교통정책을 평가하는 방법도 AADT OD의 일률적인 적용이 아닌 교통량의 계절별 평일/주말의 분산을 적용시킨 OD를 가지고 교통정책을 평가하는 방법이 교통정책을 결정함에 있어 오류를 범할 가능성을 적게 될 것으로 예상된다. 기존 연구에서는 이러한 교통량의 분산의 보정을 지점교통량에 한정하여 보정하고 있어 실질적인 네트워크 분석에 적용하기에는 무리가 있다. 이에 본 연구에서는 관측된 TCS Data를 이용하여 계절별 평일/주말의 OD 교통 패턴을 분석하여 계절별 평일/주말의 OD 교통패턴을 반영할 수 있는 보정계수를 산출하고 산출된 보정계수에 따라 AADT OD를 보정하여 네트워크 분석의 기초 자료를 구축하였다. 수정된 OD 교통량의 검증을 위하여 기존의 AADT OD의 인구당 통행발생비율과 계절별 평일/주말 OD의 통행발생량을 비교하였다. 그 결과 소수점 두 자리수에서 오차가 발생하여 비교적 합리적인 OD가 추정되었다. 또한 기존의 AADT OD를 이용하여 정책 결정을 할 때의 오류 가능성을 보이기 위하여 각 계절별 평일/주말 OD 교통량과 기존의 AADT OD를 입력 자료로 각각의 네트워크 분석 후 총통행시간의 차이를 분석하였다. 그 결과 정책 결정에 영향을 미칠 수 있을 정도의 차이가 있는 것으로 분석되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.