• 제목/요약/키워드: TCP traffic

Search Result 283, Processing Time 0.028 seconds

Adaptive Queue Management in TCP/IP Networks (TCP/IP 네트워크에서 적응적 큐 관리 알고리즘)

  • Kim, Chang Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.2
    • /
    • pp.153-167
    • /
    • 2010
  • Traffic conditions, in particular number of active TCP flows, change dramatically over time. The main goal of this paper is an adaptive queue management algorithm that can maintain network state of high-throughput and low-delay under changing traffic conditions In this paper, we devise Probability Adaptive RED(PARED) that combines the more effective elements of recent algorithms with a RED core. It automatically adjusts its adaptive marking function to account for changes in traffic load and to keep queue length within the desired target queue length. We simulate that PARED algorithm results in under changes in traffic load and mixed traffic load. The simulation test confirm this stability, and indicate that overall performances of PARED are substantially better than the RED and ARED algorithms.

Research on the enhancement of throughput for traffic in WLAN (초고속 무선 랜에서 트래픽 간의 처리율 향상을 위한 연구)

  • Song, Byunjin;Lee, Seonhee
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.53-56
    • /
    • 2015
  • In this paper, we want provide improved services with faster transmission, IEEE 802.11n was standardized. A-MPDU (Aggregation MAC Protocol Data UNIT) is a vital function of the IEEE 802.11n standard, which was proposed to improve transmission rate by reducing frame transmission overhead. In this paper, we show the problems of TCP retransmission with A-MPDU and propose a solution utilizing the property of TCP cumulative ACK. If the transmission of an MPDU subframe fails, A-MPDU mechanism allows selective re-transmission of failed MPDU subframe in the MAC layer. In TCP traffic transmission, however, a failed MPDU transmission causes TCP Duplicate ACK, which causes unnecessary TCP re-transmission. Furthermore, congestion control of TCP causes reduction in throughput. By supressing unnecessary duplicate ACKs the proposed mechanism reduces the overhead in transmitting redundant TCP ACKs, and transmitting only a HS-ACK with the highest sequence number. By using the RACK mechanism, through the simulation results, it was conrmed that the RACK mechanism increases up to 20% compared the conventional A-MPDU, at the same time, it tightly assures the fairness among TCP flows.

Efficient Video Streaming Based on the TCP-Friendly Rate Control Scheme (TCP 친화적인 전송률 제어기법 기반의 효율적인 비디오 스트리밍)

  • Lee, Jungmin;Lee, Sunhun;Chung, Kwangsue
    • Journal of Broadcast Engineering
    • /
    • v.10 no.3
    • /
    • pp.297-312
    • /
    • 2005
  • The multimedia traffic of continuous video and audio data via streaming service accounts for a significant and expanding portion of the Internet traffic. This streaming data delivery is mostly based on RTP with UDP. However, UDP does not support congestion control. For this reason, UDP causes the starvation of congestion controlled TCP traffic which reduces its bandwidth share during overload situation. In this paper, we propose a new TCP-friendly rate control scheme called 'TF-RTP(TCP-Friendly RTP)'. In the congested network state, the TF-RTP exactly estimates the competing TCP's throughput by using the modified parameters. Then, it controls the sending rate of the video streams. Therefore, the TF-RTP adjusts its sending rate to TCP-friendly and fair share with competing TCP traffics. Through the simulation, we prove that the TF-RTP correctly estimates the TCP's throughput and improves the TCP-friendliness and fairness.

Congestion Control of Self-Similar Traffic in Two-way Network (양방향 네트워크에서 자기유사성 트래픽 혼잡 제어)

  • 석경휴;송선희;김철영;나상동
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.295-303
    • /
    • 2004
  • In this Paper, we discuss an active TCP link of unsynchronized transmission mode network in two-way traffic and the Improvement of its traffic patron thorough the network pathway of protocol is shown. This is because the traffic pattern is performed on the basis of existing windows which are distributing information in several periods of time in the way of interfacing LTS control module, which is controlling by an information of exceeding the time limit of feedback loop determined by RTP, with TCP. The simulation to utilize this efficiently is performed with the circumstance of bench mark based on physical modeling of the self-similarity traffic in the performance of TCP. In this paper, we use a methodology to understand and evaluate the effect of change of transmitting protocol in sticks under the condition of the self-similar traffic in two-way network and it is shown that an improvement of congestion control by self-similarity under a heavy condition.

Delay Control using Fast TCP Prototype in Internet Communication (인터넷 통신에서 고속 TCP 프로토타입을 이용한 지연 제어)

  • 나하선;김광준;나상동
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1194-1201
    • /
    • 2003
  • Measurements of network traffic have shown that self-similarity is a ubiquitous phenomenon spanning across diverse network environments. We have advance the framework of multiple time scale congestion control and show its effectiveness at enhancing performance for fast TCP prototype control. In this paper, we extend the fast TCP prototype control framework to window-based congestion control, in particular, TCP. This is performed by interfacing TCP with a large time scale control module which adjusts the aggressiveness of bandwidth consumption behavior exhibited by TCP as a function of "large time scale" network state. i.e., conformation that exceeds the horizon of the feedback loop as determined by RTT. Performance evaluation of fast TCP prototype is facilitated by a simulation bench-mark environment which is based on physical modeling of self-similar traffic. We explicate out methodology for discerning and evaluating the impact of changes in transport protocols in the protocol stack under self-similar traffic conditions. We discuss issues arising in comparative performance evaluation under heavy-tailed workload. workload.

Performance Analysis of TCP with Adaptive Snoop Module in Wired and Wireless Communication Environments (유/무선 통신 환경에서 적응형 Snoop 모듈을 이용한 TCP 성능 분석)

  • Kim, Myung-Jin;Lim, Sae-Hoon;Kim, Doo-Yong;Kim, Ki-Wan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.83-87
    • /
    • 2011
  • TCP works well in wired networks where packet losses mainly occur due to congestion in data traffic. In wireless networks TCP does not differentiate packet losses from transmission errors or from congestion, which could lead to degrade the network performance. Several methods have been proposed to improve TCP performance over wireless links. Among them the Snoop module working at the base station is the popular method. In this paper, it is shown that the performance of Snoop largely depends upon the transmission link errors and the amount of data traffic. Also, our research shows that the local retransmission timeout value of Snoop can affect throughput. From the simulation results we suggest how to effectively use the Snoop algorithm considering data traffic and transmission link errors. It is expected that the proposed adaptive method will contribute to improving the network performance reducing the burden of the processes for data traffic.

Hybrid Scaling Based Dynamic Time Warping for Detection of Low-rate TCP Attacks

  • So, Won-Ho;Yoo, Kyoung-Min;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7B
    • /
    • pp.592-600
    • /
    • 2008
  • In this paper, a Hybrid Scaling based DTW (HS-DTW) mechanism is proposed for detection of periodic shrew TCP attacks. A low-rate TCP attack which is a type of shrew DoS (Denial of Service) attacks, was reported recently, but it is difficult to detect the attack using previous flooding DoS detection mechanisms. A pattern matching method with DTW (Dynamic Time Warping) as a type of defense mechanisms was shown to be reasonable method of detecting and defending against a periodic low-rate TCP attack in an input traffic link. This method, however, has the problem that a legitimate link may be misidentified as an attack link, if the threshold of the DTW value is not reasonable. In order to effectively discriminate between attack traffic and legitimate traffic, the difference between their DTW values should be large as possible. To increase the difference, we analyze a critical problem with a previous algorithm and introduce a scaling method that increases the difference between DTW values. Four kinds of scaling methods are considered and the standard deviation of the sampling data is adopted. We can select an appropriate scaling scheme according to the standard deviation of an input signal. This is why the HS-DTW increases the difference between DTW values of legitimate and attack traffic. The result is that the determination of the threshold value for discrimination is easier and the probability of mistaking legitimate traffic for an attack is dramatically reduced.

Performance Analysis of TCP Traffic over AODV Routing Protocol in Ad-Hoc Wireless Network (Ad-Hoc 무선망에서 AODV 라우팅 프로토콜을 이용한 TCP 트래픽의 성능분석)

  • 고영웅;마주영;육동철;박승섭
    • Journal of Internet Computing and Services
    • /
    • v.2 no.3
    • /
    • pp.9-17
    • /
    • 2001
  • Ad-Hoc networks consist of a set of mobile hosts that communicate using wireless links, without the use of other communicate support facilities (such as base stations). The topology of an Ad-Hoc network changes due to the movement of mobile host. which may lead to sudden packet loss. Recently, a large amount of research has focused on the routing protocols needed in such an environment. but researches about Internet traffic performance analysis were unexhausted. Accordingly, we have simulated Ad-Hoc mobile network that using AODV routing protocol and Ad-Hoc mobile network topology size and node speed as simulation estimation-factor to analysis traffic performance. As the result of the simulation, we identify that TCP /Reno was more sensitive than TCP/Sack about node speed and a number of the node.

  • PDF

The Congestion Control using Selective Slope Control under Multiple Time Scale of TCP (TCP의 다중 시간 간격에서 선택적 기울기 제어를 이용한 혼잡 제어)

  • Kim, Gwang-Jun;Kang, Ki-Woong;Lim, Se-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.1
    • /
    • pp.10-18
    • /
    • 2007
  • In this paper, we extend the multiple time scale control framework to window-based congestion control, in particular, TCP. This is performed by interfacing TCP with a large time scale control module which adjusts the aggressiveness of bandwidth consumption behavior exhibited by TCP as a function of "large time scale" network state. i.e., conformation that exceeds the horizon of the feedback loop as determined by RTT. Performance evaluation of multiple time scale TCP is facilitated by a simulation bench-mark environment which is based on physical modeling of self-similar traffic. If source traffic is not extended exceeding, when RTT is 450ms, in self similar burst environment, performance gain of TCP-SSC is up to 45% for ${\alpha}$=1.05. However, its is acquired only 20% performance gain for ${\alpha}$=1.95 relatively. Therefore we showed that by TCP-MTS at large time scale into a rate-based feedback congestion control, we are able to improve two times performance significantly.

  • PDF

Performance of GFR service for TCP traffic in ATM switches with FIFO shared buffer (FIFO 공유 버퍼를 갖는 ATM 스위치에서 TCP 트래픽을 위한 GFR 성능 평가)

  • Park Inyong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.10 no.1
    • /
    • pp.49-57
    • /
    • 2005
  • ATM Form has defined the guaranteed frame rate (GFR) service to provide minimum cell rate (MCR) guarantees for TCP traffic in ATM networks and allow it to fairly share residual bandwidth. GFR switch implementation consists of the frame-based generic cell rate algorithm (F-GCRA) and a frame forwarding mechanism. The F-GCRA identifies frames that are eligible for an MCR guarantee. The frame forwarding mechanism buffers cells at a frame unit according to information provided by the F-GCRA and forwards the buffered cells to an output port according to its scheduling discipline. A simple GFR mechanism with shared buffer with a global threshold is a feasible implementation mechanism, but has been known that it is insufficient to guarantee the MCR. This paper has estimated performance of GFR service for TCP traffic over ATM switches with the simple FIFO-based mechanism

  • PDF