• Title/Summary/Keyword: TBuMA

Search Result 7, Processing Time 0.024 seconds

Altered Pharmacokinetics and Hepatic Uptake of TBuMA in Ethynylestradio-Induced Cholestasis

  • Hong Soon-Sun;Choi Jong-Moon;Jin Hyo-Eon;Shim Chang-Koo
    • Archives of Pharmacal Research
    • /
    • v.29 no.4
    • /
    • pp.323-327
    • /
    • 2006
  • The objective of this study was to examine the pharmacokinetics of organic cations in intrahepatic cholestatic rats. A pretreatment with $17{\alpha}$-ethynylestradiol was used to induce intrahepatic cholestasis, and tributylmethylammonium (TBuMA) was used as a representative model organic cation. When $[^3H]$TBuMA was intravenously administered, the AUC value for TBuMA was significantly increased by $79\%$ in cholestasis, and its total systemic clearance was consequently decreased by $46\%$. In addition, the in vivo hepatic uptake clearance of TBuMA from the plasma to the liver was decreased by $50\%$ in cholestasis. The concentration of bile salts in plasma was increased by 2.1 fold in cholestatic rats. Since TBuMA forms ion-pair complexes with anionic components such as bile salts, the decreased hepatic uptake of TBuMA in cholestasis may be due to a change in endogenous components, e.g., bile salts in the plasma. In isolated normal hepatocytes, the uptake clearance for TBuMA in the presence of cholestatic plasma was decreased by $20\%$ compared with normal plasma. Therefore, we conclude that the inhibition of the hepatic uptake process by the cholestasis may be in part due to the increased formation of ion-pair complexes of TBuMA with bile salts in the plasma.

Mechanism of Intestinal Transport of an Organic Cation, Tributylmethylammonium in Caco-2 Cell Monolayers

  • Hong Soon-Sun;Moon Sang-Cherl;Shim Chang-Koo
    • Archives of Pharmacal Research
    • /
    • v.29 no.4
    • /
    • pp.318-322
    • /
    • 2006
  • Many quaternary ammonium salts are incompletely absorbed after their oral administration and may also be actively secreted into the intestine. However, the underlying mechanism(s) that control the transport of these cations across the intestinal epithelium is not well understood. In this study, the mechanism of absorption of quaternary ammonium salts was investigated using Caco-2 cell monolayers, a human colon carcinoma cell line. Tributylmethylammonium (TBuMA) was used as a model quaternary ammonium salts. When TBuMA was administrated at a dose of 13.3 imole/kg via iv and oral routes, the AUC values were $783.7{\pm}43.6\;and\;249.1{\pm}28.0{\mu}mole\;min/L$ for iv and oral administration, indicating a lower oral bioavailability of TBuMA $(35.6\%)$. The apparent permeability across Caco-2 monolayers from the basal to the apical side was 1.3 times (p<0.05) greater than that from the apical to the basal side, indicating a net secretion of TBuMA in the intestine. This secretion appeared to be responsible for the low oral bioavailability of the compound, probably mediated by p-gp (p-glycoprotein) located in the apical membrane. In addition, the uptake of TBuMA by the apical membrane showed a $Na^+$ dependency. Thus, TBuMA appears to absorbed via a $Na^+$ dependent carrier and is then secreted via p-gp related carriers.

Hepatobiliary Excretion of Tributylmethylamonium in Rats with Lipopolysaccharide-Induced Acute Inflammation

  • Lee, In-Kyung;Lee, Young-Mi;Song, Im-Sook;Chung, Suk-Jae;Kim, Sang-Geon;Lee, Myung-Gull;Shim, Chang-Koo
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.969-972
    • /
    • 2002
  • The alteration in the pharmacokinetic behaviors of organic cations (OCs) in rats during acute inflammation (AI) was investigated. AI was induced by an intraperitoneal injection of lipopolysaccharide (LPS, 5 mg/kg) 24 hr prior to the start of pharmacokinetic studies. Tributylmethylammonium (TBuMA) was selected as a model OC since it is largely excreted into bile, and is neither metabolized nor binds to proteins in the body. When TBuMA was administered intravenously to AI rats at a dose of 6.6 $\mu$mole/kg, the AUC was increased, while biliary excretion (i.e., cumulative amount and apparent clearance) was decreased compared to normal rats. When TBuMA was administered intravenously to AI rats at a constant rate (i.e., a bolus injection at a dose of 1.5 $\mu$mole/kg followed by a constant infusion at a rate of 1.5 $\mu$mole/kg/hr for 165 min), steady-state concentrations of plasma and liver concentrations of TBuMA were increased significantly, while in vivo hepatic uptake (amount) and canalicular excretion (clearance) were decreased. These results are consistent with a hypothesis in which both the sinusoidal uptake of TBuMA into hepatocytes via the OCT1 and the canalicular excretion of the compound from hepatocytes via the P-gp are decreased by LPS-induced AI.

Effect of a New Hepatoprotective Agent, YH-439, on the Hepatobiliary Transport of Organic Cations (OCs): Selective Inhibition of Sinusoidal OCs Uptake without Influencing Glucose Uptake and Canalicular OCs Excretion

  • Hong Soon Sun;Li Hong;Choi Min Koo;Chung Suk Jae;Shim Chang Koo
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.330-334
    • /
    • 2005
  • The effect of a new hepatoprotective agent, YH-439, on the hepatobiliary transport of a model organic cation (OC), TBuMA (tributylmethylammonium), was investigated. The area under the plasma concentration-time curve (AUC) from time zero to 4 h following iv administration of TBuMA (6.6 $\mu$mol/kg) was increased significantly when YH-439 in corn oil (300 mg/kg) was orally administered to rats 24 h prior to the experiment. Nevertheless, the cumulative biliary excretion of TBuMA remained unchanged. As a consequence, the apparent biliary clearance ($CL_b$) of TBuMA was decreased significantly as a result of YH-439 pretreatment, consistent with the fact that the in vivo excretion clearance of TBuMA across the canalicular membrane ($CL_{exc}$) was not changed by the pretreatment. The in vitro uptake of TBuMA into isolated hepatocytes was decreased by one half by the pretreatment, owing to a decrease in the apparent V$_{max}$ and $CL_{linear}$, but the $K_m$ for the process remained constant. Most interestingly, however, the sinusoidal uptake of glucose, a nutrient, into hepatocytes was not influenced by the pretreatment, suggesting the YH-439 pretreatment specifically impaired the sinusoidal uptake of OCs. Thus, the OC-specific inhibition of hepatic uptake, without influencing the uptake of glucose, a nutrient, appeared to be associated with the hepatoprotective activity of YH-439.

Comparative Study on the Transport Characteristics of Canalicular Liver Plasma Membrane Vesicles Prepared by Two Different Methods (제조 방법에 따른 간 모세담관막 소포계의 수송 특성 비교)

  • Song, Im-Sook;Chung, Suk-Jae;Shim, Chang-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.1
    • /
    • pp.13-19
    • /
    • 1999
  • Canalicular liver plasma membrane vesicles (cLPM) were prepared according to two different methods (Inoue method and Meier method), and were evaluated for their protein yield, enzyme activity and transport characteristics. No difference was found between the methods in the protein yield (i.e., $0.14{\pm}0.031$ and $0.15{\pm}0.050$ mglg liver for Inoue method and Meier method, respectively). The activity of alkaline phosphatase, a marker enzyme of canalicular membrane, was significantly (P<0.05) higher in the vesicles of Meier method $(3.52{\pm}0.91\;mmol/mg/hr)$than in the vesicles of Inoue method ($2.28{\pm}0.94$ mmol/mg/hr) indicating that more purified cLPM were obtained from Meier method compared with Inoue method. ATP-dependent vesicular uptake of taurocholate and tributylmethylammonium (TBuMA) was observed for vesicles of both methods, and the kinetic parameters responsible for the transport were similar between the vesicles of both methods (for example, $V_{max}:$ 9.72 nmol/mg protein/30sec and $K_m:$ 0.63 mM for Inoue method; $V_{max}:$ 10.1 nmol/mg protein/30sec and $K_m:$ 0.70 mM for Meier method). A pH gradient dependent counter transport of TBuMA was also observed for both vesicles with similar kinetic characteristics. Either the uptake of taurocholate in the absence of ATP or that of TBuMA in the absence of pH gradient, which may represent passive diffusion of respective compound into the vesicles, was more rapid for the vesicles of Meier method than for the vesicles of Inoue method. For example, passive diffusion rate constants $(K_d)$ for TBuMA uptake into the vesicles were 0.00030 and 0.00052\;{\mu}l/mg$ protein/min for the vesicles of Inoue method and Meier method, respectively. It may indicate that more leaky vesicles are obtained form the Meier method compared with the Inoue method. These aspects together with the time necessary to prepare the vesicles (i.e., 8 hr for Inoue method and 23 hr for Meier method) should be considered before selecting an appropriate method for the preparation of cLPM.

  • PDF

Transport of Organic Cations across Caco-2 Cell Monolayers

  • Kim, Kyong;Chung, Suk-Jae;Shim, Chang-Koo
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.415.1-415.1
    • /
    • 2002
  • Apical to basal transport of organic cations (OCs) such as tributylmethylammonium (TBuMA), triethyimethylammonium (TEMA). 1-methyl-4-phenylpyridinium (MPP), and berberine across Caco-2 cell monolayers was measured to elucidate the intestinal absorption of OCs. Basal to apical transport of MPP and berberine was larger than apical to basal transport and showed temperature dependency and concentration dependency. indicating that MPP and berberine are secreted into the inteslinal lumen. (omitted)

  • PDF

Effect of Nitric Oxide on the Sinusoidal Uptake of Organic Cations and Anions by Isolated Hepatocytes

  • Song, Im-Sook;Lee, In-Kyoung;Chung, Suk-Jae;Kim, Sang-Geon;Lee, Myung-Gull;Shim, Chang-Koo
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.984-988
    • /
    • 2002
  • The issue of whether or not the presence NOx (NO and oxidized metabolites) in the hepatocytes at pathological levels affects the functional activity of transport systems within the sinusoidal membrane was investigated. For this purpose, the effect of the pretreatment of isolated hepatocytes with sodium nitroprusside (SNP), a spontaneous NO donor, on the sinusoidal uptake of tributylmethylammonium (TBuMA) and triethylmethyl ammonium (TEMA), representative substrates of the organic cation transporter (OCT), and taurocholate, a representative substrate of the $Na^+$/taurocholate cotransporting polypeptide (NTCP), was measured. The uptake of TBuMA and TEMA was not affected by the pretreatment, as demonstrated by the nearly identical kinetic parameters for the uptake ($i.e., V_{max}, K_{m} and CL_{linear}$). The uptake of mannitol into hepatocytes was not affected, demonstrating that the membrane integrity remained constant, irregardless of the SNP prutreatment. On the contrary, the uptake of taurocholate was significantly inhibited by the pretreatment, resulting in a significant decrease in V_{max}$, thus providing a clear demonstration that NOx preferentially affects the function of NTCP rather than OCT on the sinusoidal membrane. A direct interaction between NOx and NTCP or a decrease in $Na^+/K^+$ ATPase activity as the result of SNP pretreatment might be responsible for this selective effect of NOx.