• Title/Summary/Keyword: TBP extraction

Search Result 68, Processing Time 0.029 seconds

Drop formation at submerged nozzles: Comparison of aqueous dispersed and organic dispersed cases for TBP-dodecane and nitric acid system

  • Roy, Amitava;Darekar, Mayur;Singh, K.K.;Shenoy, K.T.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.761-768
    • /
    • 2019
  • Understanding the phenomena of formation of single drops is necessary to understand the hydrodynamics in solvent extraction equipment which are used for separation of nuclear materials. In this work, the phenomena of aqueous phase and organic phase drop formation at submerged nozzles are compared by conducting experiments with 30%TBP (v/v) in dodecane as the organic phase and nitric acid as the aqueous phase. Two different nozzles and three different nitric acid concentrations are used. For each nozzle and nitric acid concentration, velocity of the dispersed phase is varied. Drops of aqueous phase formed at downward oriented nozzles submerged in organic phase are observed to be smaller than the drops of organic phase formed at upward oriented nozzles submerged in aqueous phase. Correlations to estimate drop diameter are proposed.

A study on the Determination and Solvent Extraction Efficiencies of Rare Earth Elements by TBP and Nitrate Salt (TBP와 질산염을 이용한 희토류원소의 용매추출과 분석에 관한 연구)

  • Lee, Jung Min;Lee, Yong Ju;Kim, Sook Young;Kim, Young Man;Choi, Beom Suk
    • Analytical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.103-108
    • /
    • 2001
  • Rare earth elements(REE) were separated by solvent extraction with tri-n-butyl phosphate(TBP) and $NaNO_3$, followed by back extraction with water. The method was applied to the determination of REE to circumvent the spectral interferences of ICP-AES analysis. The effects of the $NaNO_3$ concentration and the addition of hydrophobic solvents on the extraction efficiencies were investigated. Increases of the $NaNO_3$ concentration enhanced the extraction efficiencies of REE, and more than 95% recoveries were obtained at 5M of $NaNO_3$ concentration. On the other hand, addition of hydrophobic solvents lowered the extraction efficiencies. The method was applied to determine the REE in the monazite sample. But the precisions of the analytical results were more than 20%.

  • PDF

Evaluation of A Removal Process for the Residual Uranium from the Simulated Radwaste Solution by Solvent Extraction with TBP (TBP 용매추출에 의한 잔존 우라늄 제거공정 평가)

  • Lee, Eil-Hee;Kim, Kwang-Wook;Lim, Jae-Gwan;Kwon, Seon-Gil;Yoo, Jae-Hyung
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.232-237
    • /
    • 1998
  • This study was carried out to find the optimal operating conditions for separation of residual uranium from the simulated radwaste solution containing 19 elements, and to evaluate the validity of the process. The selected process was based on the solvent extraction with TBP(tributyl phosphate). As an extractor, two miniature mixer-settlers with a total of 18 stages were used. Extraction yield of U, Np and Tc was about 99.2%. 32.1%, and 99.9%, respectively. The other elements were coextracted in the range of 1~4%. Extraction yield of U exceeded those of the previous work performed with batch system, which resulted in the low extractability of U (about 80%) according to the coexisting element such as Nd and Fe. It was due to the characteristics of multi-stage extractor. On the other hand, low extractability of Np was caused by various oxidation states in the nitric acid medium. In the case of Tc, its high extractability may be attributed to the complex formation with Zr and U, which is not well proved yet. All elements extracted with TBP were stripped into aqueous phase more than 99% by 0.01M $HNO_3$. From the results, this process has no problem with respect to in the same step was required, because Np was distributed in the raffinate and U product, respectively.

  • PDF

Separation of Palladium(II) and Ruthenium(IV) from Hydrochloric Acid Solution by Solvent Extraction (염산용액에서 용매추출에 의한 팔라듐(II)과 루테늄(IV)의 분리)

  • Lee, Man-seung;Ahn, Jong-Gwan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.6
    • /
    • pp.349-355
    • /
    • 2009
  • In the solvent extraction of Ru(IV) with Alamine336, it was found that Ru took part in the reaction as $RuCl_{6}_^{2-}$ in the HCl concentration range of 1 to 5 M. Interaction parameter between hydrogen ion and $RuCl_{6}_^{2-}$ was estimated by applying Bromley equation to the extraction data. From the mixed solutions of Pd(II) and Ru(IV), the distribution coefficients of Pd were found to be higher than those of Ru in the experimental ranges. Separation factor between Pd and Ru rapidly increased with the decrease of Alamine336 concentration. About 60% of the Ru from the mixed solutions was extracted by TBP at 8.3 M HCl, while Pd was not extracted in the HCl concentration range of 1.6 to 8.3 M.

A study on the Separation of Acetic Acid, Nitric Acid and Hydrofluoric Acid from Waste Etching Solution of Si Wafer Manufacturing Process (Silicon wafer 에칭공정시 발생(發生)되는 폐(廢)에칭액 으로부터 초산(醋酸), 질산(窒酸) 및 불산(弗酸)의 분리.회수(分離.回收)에 관한 연구(硏究))

  • Kim, Jun-Young;Lee, Hyang-Sook;Shin, Chang-Hoon;Kim, Ju-Yup;Kim, Hyun-Sang;Ahn, Jae-Woo
    • Resources Recycling
    • /
    • v.16 no.1 s.75
    • /
    • pp.59-67
    • /
    • 2007
  • Recovery of acids from the waste etching solution of containing acetic, nitric and hydrofluoric acid discharged from silicon wafer manufacturing process has been attempted by using solvent extraction method. EHA(2-Ethylhexlalcohol) for acetic acid and TBP(Tri-butly Phosphate) for nitric and hydrofluoric acid as a extraction agent was used to the experiment to obtain the process design data in separation procedure. From the experimental data and McCabe-Thiele diagram analysis, we obtained the optimum conditions of phase ratio(O/A) and stages to separate each acid sequently from the mixed acids. The recovery yield was obtained above 90% for acetic acid from the acid mixtures, 90% for nitric acid from acetic acid extraction raffinate and then above 67% for hydrofluoric acid from final extraction raffinate.

The study on the Separation of Waste acid containing Acetic acid, Hydrofluoric acid and Nitric acid (초산, 불산 및 질산을 함유한 폐혼산의 분리 연구)

  • Kim, Jun-Young;Lee, Hyang-Sook;Shin, Chang-Hoon;Kim, Ju-Yup;Kim, Hyun-Sang;Ahn, Jae-Woo
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2006.05a
    • /
    • pp.47-55
    • /
    • 2006
  • Recovery of acids from the waste etching solution of containing nitric, hydrofluoric and acetic acid discharged from silicon wafer manufacturing process has been attempted by using solvent extraction method. With EHA (2-Ethylhexlalcohol) for acetic acid and TBP(Tri-butly Phosphate) for nitic and hydrofluoric acid as extraction agent was carried on experiment to obtain the process design data in separation procedure. From the McCabe-Thiele diagram analysis, we obtained the optimum conditions of phase ratio(O/A) and stages to separate the each acid sequently from the mixture acids. The recovery yield was obtained 90% above for acetic acid from the acid mixtures, 90% above for nitric acid from acetic acid extraction raffinate and then 67% above for hydrofluoric acid from final extraction raffinate.

  • PDF

Separation of Fission Product Elements from Synthetic Dissolver Solutions of Spent Pressurized Water Reactor Fuels by $TBP/XAD-16/HNO_3$Extraction Chromatography ($TBP/XAD-16/HNO_3$추출 크로마토그래피에 의한 모의 사용후핵연료 용해용액 중 미량 핵분열생성물 원소의 분리)

  • Lee, Chang Heon;Choi, Kwang Soon;Kim, Jung Suk;Choi, Ke Chon;Jee, Kwang Yong;Kim, Won Ho
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.4
    • /
    • pp.304-311
    • /
    • 2001
  • A study has been carried out on the extraction chromatographic separation of fission products from spent pressurized water reactor (PWR) fuels for inductively coupled plasma atomic emission spectrometric analysis. Impregnation capacity of tri-n-butyl phosphate (TBP), which is well known as an extractant in the field of uranium separation from various nuclear grade materials, on Amberlite XAD polymeric macroporous support materials was measured. Amberlite XAD-16 of which the surface area is the highest was selected as a support material because its TBP impregnation capacity was the largest in Amberlite XADs. Sorption behaviour of this TBP impregnated resin was investigated for the fission product elements using acidic solutions simulated for dissolver solutions of spent PWR fuels. The parameters affecting the performance of the separation system were optimized. The fission product elements studied excluding Pd and Ru were quantitatively recovered with the precision of less than 3.1%.

  • PDF

Supported Liquid Membrane Composed of Tri-n-butyl Phosphate or Liquid Polymer for Phenol Separation (Tri-n-butyl phosphate와 액상고분자 지지액막을 이용한 페놀의 분리)

  • 안효성;이용택;윤인주;김명수
    • Membrane Journal
    • /
    • v.8 no.4
    • /
    • pp.228-234
    • /
    • 1998
  • Among various water contaminents, organic compounds like phenol are difficult to be removed or destroyed by conventional methods under the unusual discharge conditions. The separation of phenol from aqueous solution has been carried out by several methods recently: absorption by an activated carbon, solvent extraction and liquid membrane technology. The liquid membrane based on water-oil emulsification has been tested as an alternative technology of the conventional technology. In this work, tri-n-butyl phosphate(TBP) and liquid polymers were examined as a liquid membrane in the supported liquid membrane(SLM). The feed concentration of phenol was varied and various types of liquid membranes were used to examine their effects on separation of phenol. It was found that TBP, polypropylene glycol 4000(PPG 4000) and polybutytene glycol 500(PBG 500) were proper carriers because mass transfer rates through them were much higher than or similar to that through methyl isobutyl ketone(MIBK) which was used as a conventional solvent in a solvent extraction process.

  • PDF