• Title/Summary/Keyword: TBM performance prediction

Search Result 43, Processing Time 0.02 seconds

Case study of design and construction for cutter change in EPB TBM tunneling (EPB 쉴드 TBM 커터 교체 설계 및 시공 사례 분석)

  • Lee, Jae-won;Kang, Sung-wook;Jung, Jae-hoon;Kang, Han-byul;Shin, Young Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.553-581
    • /
    • 2022
  • Shortly after tunnel boring machine (TBM) was introduced in the tunneling industry, the use of TBM has surprisingly increased worldwide due to its performance together with the benefit of being safely and environmentally friendly. One of the main cost items in the TBM tunneling in rock and soil is changing damaged or worn cutters. It is because that the cutter change is a time-consuming and costly activity that can significantly reduce the TBM utilization and advance rate and has a major effect on the total time and cost of TBM tunneling projects. Therefore, the importance of accurately evaluating the cutter life can never be overemphasized. However, the prediction of cutter wear in soil, rock including mixed face is very complex and not yet fully clarified, subsequently keeping engineers busy around the world. Various prediction models for cutter wear have been developed and introduced, but these models almost usually produce highly variable results due to inherent uncertainties in the models. In this study, a case study of design and construction of disc cutter change is introduced and analyzed, rather than proposing a prediction model of cutter wear. As the disc cutter is strongly affected by the geological condition, TBM machine characteristic and operation, authors believe it is very hard to suggest a generalized prediction model given the uncertainties and limitations therefore it would be more practical to analyze a real case and provide a detailed discussion of the difference between prediction and result for the cutter change. By doing so, up-to-date idea about planning and execution of cutter change in practice can be promoted.

Statistical Characteristics and Rational Estimation of Rock TBM Utilization (암반굴착용 TBM 가동율의 통계적 특성 및 합리적 추정에 관한 연구)

  • Ko, Tae Young;Kim, Taek Kon;Lee, Dae Hyuck
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.356-366
    • /
    • 2019
  • Various TBM performance prediction models have been developed and most of them were considered penetration rate only. Despite the fact that some models have suggested equations and charts for estimating the utilization factor, but there are a few studies to estimate the TBM utilization factor. Utilization factor is affected by the type of TBM machine, operation, maintenance of machine, geological conditions, contractor experience and other factors. In this study, more than 100 case studies are analyzed to determine the relationship between the utilization factor and RMR, geological conditions, TBM types, tunnel length, and TBM diameter. Simple and multiple linear regression analysis are performed to develop predictive models for the utilization factor. The predictive model with explanatory variables of geological conditions, TBM types, tunnel length, and TBM diameter does not give a good correlation. The predictive models with explanatory variable of RMR give higher values of the coefficient of determination.

A Study on the Prediction of Disc Cutter Wear Using TBM Data and Machine Learning Algorithm (TBM 데이터와 머신러닝 기법을 이용한 디스크 커터마모 예측에 관한 연구)

  • Tae-Ho, Kang;Soon-Wook, Choi;Chulho, Lee;Soo-Ho, Chang
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.502-517
    • /
    • 2022
  • As the use of TBM increases, research has recently increased to to analyze TBM data with machine learning techniques to predict the exchange cycle of disc cutters, and predict the advance rate of TBM. In this study, a regression prediction of disc cutte wear of slurry shield TBM site was made by combining machine learning based on the machine data and the geotechnical data obtained during the excavation. The data were divided into 7:3 for training and testing the prediction of disc cutter wear, and the hyper-parameters are optimized by cross-validated grid-search over a parameter grid. As a result, gradient boosting based on the ensemble model showed good performance with a determination coefficient of 0.852 and a root-mean-square-error of 3.111 and especially excellent results in fit times along with learning performance. Based on the results, it is judged that the suitability of the prediction model using data including mechanical data and geotechnical information is high. In addition, research is needed to increase the diversity of ground conditions and the amount of disc cutter data.

Development of testing apparatus and fundamental study for performance and cutting tool wear of EPB TBM in soft ground (토사지반 EPB TBM의 굴진성능 및 커팅툴 마모량에 관한 실험장비 개발 및 기초연구)

  • Kim, Dae-Young;Kang, Han-Byul;Shin, Young Jin;Jung, Jae-Hoon;Lee, Jae-won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.453-467
    • /
    • 2018
  • The excavation performance and the cutting tool wear prediction of shield TBM are very important issues for design and construction in TBM tunneling. For hard-rock TBMs, CSM and NTNU model have been widely used for prediction of disc cutter wear and penetration rate. But in case of soft-ground TBMs, the wear evaluation and the excavation performance have not been studied in details due to the complexity of the ground behavior and therefore few testing methods have been proposed. In this study, a new soil abrasion and penetration tester (SAPT) that simulates EPB TBM excavation process is introduced which overcomes the drawbacks of the previously developed soil abrasivity testers. Parametric tests for penetration rate, foam mixing ratio, foam concentration were conducted to evaluate influential parameters affecting TBM excavation and also ripper wear was measured in laboratory. The results of artificial soil specimen composed of 70% illite and 30% silica sand showed TBM additives such as foam play a key role in terms of excavation and tool wear.

A Study on the Prediction of Rock Classification Using Shield TBM Data and Machine Learning Classification Algorithms (쉴드 TBM 데이터와 머신러닝 분류 알고리즘을 이용한 암반 분류 예측에 관한 연구)

  • Kang, Tae-Ho;Choi, Soon-Wook;Lee, Chulho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.494-507
    • /
    • 2021
  • With the increasing use of TBM, research has recently been conducted in Korea to analyze TBM data with machine learning techniques to predict the ground in front of TBM, predict the exchange cycle of disk cutters, and predict the advance rate of TBM. In this study, classification prediction of rock characteristics of slurry shield TBM sites was made by combining traditional rock classification techniques and machine learning techniques widely used in various fields with machine data during TBM excavation. The items of rock characteristic classification criteria were set as RQD, uniaxial compression strength, and elastic wave speed, and the rock conditions for each item were classified into three classes: class 0 (good), 1 (normal), and 2 (poor), and machine learning was performed on six class algorithms. As a result, the ensemble model showed good performance, and the LigthtGBM model, which showed excellent results in learning speed as well as learning performance, was found to be optimal in the target site ground. Using the classification model for the three rock characteristics set in this study, it is believed that it will be possible to provide rock conditions for sections where ground information is not provided, which will help during excavation work.

Sequential prediction of TBM penetration rate using a gradient boosted regression tree during tunneling

  • Lee, Hang-Lo;Song, Ki-Il;Qi, Chongchong;Kim, Kyoung-Yul
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.523-533
    • /
    • 2022
  • Several prediction model of penetration rate (PR) of tunnel boring machines (TBMs) have been focused on applying to design stage. In construction stage, however, the expected PR and its trends are changed during tunneling owing to TBM excavation skills and the gap between the investigated and actual geological conditions. Monitoring the PR during tunneling is crucial to rescheduling the excavation plan in real-time. This study proposes a sequential prediction method applicable in the construction stage. Geological and TBM operating data are collected from Gunpo cable tunnel in Korea, and preprocessed through normalization and augmentation. The results show that the sequential prediction for 1 ring unit prediction distance (UPD) is R2≥0.79; whereas, a one-step prediction is R2≤0.30. In modeling algorithm, a gradient boosted regression tree (GBRT) outperformed a least square-based linear regression in sequential prediction method. For practical use, a simple equation between the R2 and UPD is proposed. When UPD increases R2 decreases exponentially; In particular, UPD at R2=0.60 is calculated as 28 rings using the equation. Such a time interval will provide enough time for decision-making. Evidently, the UPD can be adjusted depending on other project and the R2 value targeted by an operator. Therefore, a calculation process for the equation between the R2 and UPD is addressed.

Prediction of Uniaxial Compressive Strength of Rock using Shield TBM Machine Data and Machine Learning Technique (쉴드 TBM 기계 데이터 및 머신러닝 기법을 이용한 암석의 일축압축강도 예측)

  • Kim, Tae-Hwan;Ko, Tae Young;Park, Yang Soo;Kim, Taek Kon;Lee, Dae Hyuk
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.214-225
    • /
    • 2020
  • Uniaxial compressive strength (UCS) of rock is one of the important factors to determine the advance speed during shield TBM tunnel excavation. UCS can be obtained through the Geotechnical Data Report (GDR), and it is difficult to measure UCS for all tunneling alignment. Therefore, the purpose of this study is to predict UCS by utilizing TBM machine driving data and machine learning technique. Several machine learning techniques were compared to predict UCS, and it was confirmed the stacking model has the most successful prediction performance. TBM machine data and UCS used in the analysis were obtained from the excavation of rock strata with slurry shield TBMs. The data were divided into 8:2 for training and test and pre-processed including feature selection, scaling, and outlier removal. After completing the hyper-parameter tuning, the stacking model was evaluated with the root-mean-square error (RMSE) and the determination coefficient (R2), and it was found to be 5.556 and 0.943, respectively. Based on the results, the sacking models are considered useful in predicting rock strength with TBM excavation data.

Several models for tunnel boring machine performance prediction based on machine learning

  • Mahmoodzadeh, Arsalan;Nejati, Hamid Reza;Ibrahim, Hawkar Hashim;Ali, Hunar Farid Hama;Mohammed, Adil Hussein;Rashidi, Shima;Majeed, Mohammed Kamal
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.75-91
    • /
    • 2022
  • This paper aims to show how to use several Machine Learning (ML) methods to estimate the TBM penetration rate systematically (TBM-PR). To this end, 1125 datasets including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), punch slope index (PSI), distance between the planes of weakness (DPW), orientation of discontinuities (alpha angle-α), rock fracture class (RFC), and actual/measured TBM-PRs were established. To evaluate the ML methods' ability to perform, the 5-fold cross-validation was taken into consideration. Eventually, comparing the ML outcomes and the TBM monitoring data indicated that the ML methods have a very good potential ability in the prediction of TBM-PR. However, the long short-term memory model with a correlation coefficient of 0.9932 and a route mean square error of 2.68E-6 outperformed the remaining six ML algorithms. The backward selection method showed that PSI and RFC were more and less significant parameters on the TBM-PR compared to the others.

Shield TBM disc cutter replacement and wear rate prediction using machine learning techniques

  • Kim, Yunhee;Hong, Jiyeon;Shin, Jaewoo;Kim, Bumjoo
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.249-258
    • /
    • 2022
  • A disc cutter is an excavation tool on a tunnel boring machine (TBM) cutterhead; it crushes and cuts rock mass while the machine excavates using the cutterhead's rotational movement. Disc cutter wear occurs naturally. Thus, along with the management of downtime and excavation efficiency, abrasioned disc cutters need to be replaced at the proper time; otherwise, the construction period could be delayed and the cost could increase. The most common prediction models for TBM performance and for the disc cutter lifetime have been proposed by the Colorado School of Mines and Norwegian University of Science and Technology. However, design parameters of existing models do not well correspond to the field values when a TBM encounters complex and difficult ground conditions in the field. Thus, this study proposes a series of machine learning models to predict the disc cutter lifetime of a shield TBM using the excavation (machine) data during operation which is response to the rock mass. This study utilizes five different machine learning techniques: four types of classification models (i.e., K-Nearest Neighbors (KNN), Support Vector Machine, Decision Tree, and Staking Ensemble Model) and one artificial neural network (ANN) model. The KNN model was found to be the best model among the four classification models, affording the highest recall of 81%. The ANN model also predicted the wear rate of disc cutters reasonably well.

Statistical analysis of NTNU test results to predict rock TBM performance (TBM 굴진성능 예측을 위한 NTNU 시험결과의 분석)

  • Choi, Soon-Wook;Chang, Soo-Ho;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.3
    • /
    • pp.243-260
    • /
    • 2011
  • To predict TBM performance in design stage is indispensable for its successful application. The NTNU model, one of the representative TBM performance prediction models uses two distinct parameters such as DRI and CLI obtained from three different tests on bored rock cores. Based on DRI and CLI, it is possible to predict TBM advance rate and cutter life in the NTNU model. In this study, NTNU testing methods and their related testing equipments were introduced to measure DRl and CLI for the NTNU model. Then, in order to derive their relationships, the two key parameters measured for 39 domestic rocks were compared with physico-mechanical properties of rock such as uniaxial compressive strength and quartz content. Lastly, the experimental results were also compared with NTNU database to verify their reliability.