• Title/Summary/Keyword: TBM operational parameters

Search Result 7, Processing Time 0.02 seconds

Influence of TBM operational parameters on optimized penetration rate in schistose rocks, a case study: Golab tunnel Lot-1, Iran

  • Eftekhari, A.;Aalianvari, A.;Rostami, J.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.239-248
    • /
    • 2018
  • TBM penetration rate is a function of intact rock properties, rock mass conditions and TBM operational parameters. Machine rate of penetrationcan be predicted by knowledge of the ground conditions and its effects on machine performance. The variation of TBM operational parameters such as penetration rate and thrust plays an important role in its performance. This study presents the results of the analysis on the TBM penetration rates in schistose rock types present along the alignment of Golab tunnel based on the analysis of a TBM performance database established for every stroke through different schistose rock types. The results of the analysis are compared to the results of some empirical and theoretical predictive models such as NTH and QTBM. Additional analysis was performed to find the optimum thrust and revolution per minute values for different schistose rock types.

Full-scale TBM excavation tests for rock-like materials with different uniaxial compressive strength

  • Gi-Jun Lee;Hee-Hwan Ryu;Gye-Chun Cho;Tae-Hyuk Kwon
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.487-497
    • /
    • 2023
  • Penetration rate (PR) and penetration depth (Pe) are crucial parameters for estimating the cost and time required in tunnel construction using tunnel boring machines (TBMs). This study focuses on investigating the impact of rock strength on PR and Pe through full-scale experiments. By conducting controlled tests on rock-like specimens, the study aims to understand the contributions of various ground parameters and machine-operating conditions to TBM excavation performance. An earth pressure balanced (EPB) TBM with a sectional diameter of 3.54 m was utilized in the experiments. The TBM excavated rocklike specimens with varying uniaxial compressive strength (UCS), while the thrust and cutterhead rotational speed were controlled. The results highlight the significance of the interplay between thrust, cutterhead speed, and rock strength (UCS) in determining Pe. In high UCS conditions exceeding 70 MPa, thrust plays a vital role in enhancing Pe as hard rock requires a greater thrust force for excavation. Conversely, in medium-to-low UCS conditions less than 50 MPa, thrust has a weak relationship with Pe, and Pe becomes directly proportional to the cutterhead rotational speed. Furthermore, a strong correlation was observed between Pe and cutterhead torque with a determination coefficient of 0.84. Based on these findings, a predictive model for Pe is proposed, incorporating thrust, TBM diameter, number of disc cutters, and UCS. This model offers a practical tool for estimating Pe in different excavation scenarios. The study presents unprecedented full-scale TBM excavation results, with well-controlled experiments, shedding light on the interplay between rock strength, TBM operational variables, and excavation performance. These insights are valuable for optimizing TBM excavation in grounds with varying strengths and operational conditions.

Analysis of Advanced Rate and Downtime of a Shield TBM Encountering Mixed Ground and Fault Zone: A Case Study (단층대와 복합지반을 통과하는 쉴드TBM의 굴진율 및 다운타임 발생 특성 분석)

  • Jeong, Hoyoung;Kim, Mincheol;Lee, Minwoo;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.394-406
    • /
    • 2019
  • Difficult ground conditions (e.g., fault zone and mixed grounds) are highly probable to appear in subsea and urban tunnels because of the shallow working depth and alluvial characteristics. TBM usually experienced decrease of penetration rate and increase of downtime when it meets these difficult ground conditions. The problems are usually caused by the adverse geological conditions, and it is preferable to determine the optimal operational parameters of TBM based on the previous operational data obtained while excavating a preceding tunnel. This study carried out for efficient TBM excavation in fault zone and mixed grounds. TBM excavation data from the tunnel site in Singapore and the characteristics of the TBM excavation data was analyzed. The key operational parameters (i.e., thrust, torque, and RPM), penetration rate, and downtime were highly influenced by the presence of fault zones and mixed grounds, and the features was discussed. It is expected that the results and main discussions will be useful information for future tunneling projects in similar geological conditions.

Prediction of Disk Cutter Wear Considering Ground Conditions and TBM Operation Parameters (지반 조건과 TBM 운영 파라미터를 고려한 디스크 커터 마모 예측)

  • Yunseong Kang;Tae Young Ko
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.143-153
    • /
    • 2024
  • Tunnel Boring Machine (TBM) method is a tunnel excavation method that produces lower levels of noise and vibration during excavation compared to drilling and blasting methods, and it offers higher stability. It is increasingly being applied to tunnel projects worldwide. The disc cutter is an excavation tool mounted on the cutterhead of a TBM, which constantly interacts with the ground at the tunnel face, inevitably leading to wear. In this study quantitatively predicted disc cutter wear using geological conditions, TBM operational parameters, and machine learning algorithms. Among the input variables for predicting disc cutter wear, the Uniaxial Compressive Strength (UCS) is considerably limited compared to machine and wear data, so the UCS estimation for the entire section was first conducted using TBM machine data, and then the prediction of the Coefficient of Wearing rate(CW) was performed with the completed data. Comparing the performance of CW prediction models, the XGBoost model showed the highest performance, and SHapley Additive exPlanation (SHAP) analysis was conducted to interpret the complex prediction model.

A Design and Operation of EPBM Applied in Fort Canning Boulder Bed of Singapore (싱가포르 포트캐닝 전석층에 적용된 EPBM의 설계 및 시공)

  • Kim, Uk Young;Noh, Seung Hwan;Noh, Sang Rim
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.417-422
    • /
    • 2015
  • This paper introduces the design and operational considerations for TBM tunneling in boulder bed which poses significant problems in terms of advance rate and machine wear. Managing these problems is difficult since normal soil investigation techniques do not accurately predict the presence and frequency of boulders. This has leads to considerable extra costs and delays during construction. In this paper, EPBM design and operational parameters, cutter wear characteristics and soil conditioning method in soft ground condition were studied and key successes were highlighted for future projects in similar ground condition.

Development of penetration rate model and optimum operational conditions of shield TBM for electricity transmission tunnels (터널식 전력구를 위한 순굴진율 모델 개발 및 이를 활용한 쉴드TBM 최적운전 조건 제안)

  • Kim, Jeong-Ju;Ryu, Hui-Hwan;Kim, Gyeong-Yeol;Hong, Seong-Yeon;Jeong, Ju-Hwan;Bae, Du-San
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.6
    • /
    • pp.623-641
    • /
    • 2020
  • About 5 km length of tunnels were constructed by mechanized tunnelling method using closed type shield TBM. In order to avoid construction delay problems for ensuring timely electricity transmission, it is necessary to increase the prediction accuracy of the excavation process involving machines according to rock mass types. This is important to corroborate the project duration and optimum operation for various considerations involved in the machine. So, full-scale tunnelling tests were performed for developing the advance rate model to be appropriately used for 3.6 m diameter shield TBM. About 100 test cases were established and performed using various operational parameters such as thrust force and rotational speed of cuttterhead in representative uniaxial compressive strengths. Accordingly, relationships between normal force and penetration depth and, between UCS and torque were suggested which consider UCS and thrust force conditions according to weathered, soft, hard rocks. Capacity analysis of cutterhead was performed and optimum operational conditions were also suggested based on the developed model. Based on this study, it can be expected that the project construction duration can be reduced and users can benefit from the provision of earlier service.

Development of a TBM Advance Rate Model and Its Field Application Based on Full-Scale Shield TBM Tunneling Tests in 70 MPa of Artificial Rock Mass (70 MPa급 인공암반 내 실대형 쉴드TBM 굴진실험을 통한 굴진율 모델 및 활용방안 제안)

  • Kim, Jungjoo;Kim, Kyoungyul;Ryu, Heehwan;Hwan, Jung Ju;Hong, Sungyun;Jo, Seonah;Bae, Dusan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.305-313
    • /
    • 2020
  • The use of cable tunnels for electric power transmission as well as their construction in difficult conditions such as in subsea terrains and large overburden areas has increased. So, in order to efficiently operate the small diameter shield TBM (Tunnel Boring Machine), the estimation of advance rate and development of a design model is necessary. However, due to limited scope of survey and face mapping, it is very difficult to match the rock mass characteristics and TBM operational data in order to achieve their mutual relationships and to develop an advance rate model. Also, the working mechanism of previously utilized linear cutting machine is slightly different than the real excavation mechanism owing to the penetration of a number of disc cutters taking place at the same time in the rock mass in conjunction with rotation of the cutterhead. So, in order to suggest the advance rate and machine design models for small diameter TBMs, an EPB (Earth Pressure Balance) shield TBM having 3.54 m diameter cutterhead was manufactured and 19 cases of full-scale tunneling tests were performed each in 87.5 ㎥ volume of artificial rock mass. The relationships between advance rate and machine data were effectively analyzed by performing the tests in homogeneous rock mass with 70 MPa uniaxial compressive strength according to the TBM operational parameters such as thrust force and RPM of cutterhead. The utilization of the recorded penetration depth and torque values in the development of models is more accurate and realistic since they were derived through real excavation mechanism. The relationships between normal force on single disc cutter and penetration depth as well as between normal force and rolling force were suggested in this study. The prediction of advance rate and design of TBM can be performed in rock mass having 70 MPa strength using these relationships. An effort was made to improve the application of the developed model by applying the FPI (Field Penetration Index) concept which can overcome the limitation of 100% RQD (Rock Quality Designation) in artificial rock mass.