• Title/Summary/Keyword: TBM cutter

Search Result 91, Processing Time 0.019 seconds

A numerical study on the optimum spacing of disc cutters considering rock strength and penetration depth using discrete element method (암반강도 및 압입깊이에 따른 디스크커터의 최적간격 산정을 위한 개별요소법 기반 수치해석 연구)

  • Lee, Sang Yun;Song, Ki-il;Jung, Ju Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.383-399
    • /
    • 2020
  • Optimizing the spacing of the disc cutter is a key element in the design of the TBM cutter head, which determines the drilling performance of the TBM. The full-scale linear cutting test is known as the most reliable and accurate test for calculating the spacing of the disc cutter, but it has the disadvantage of costly and time-consuming for the full-scale experiment. In this study, through the numerical analysis study based on the discrete element method, the tendency between Specific Energy-S/P ratio according to uniaxial compression strength and penetration depth of rock was analyzed, and the optimum spacing of 17-inch disc cutter was derived. To examine the appropriateness of the numerical analysis model, the rolling force acting on the disc cutter was compared and reviewed with the CSM model. As a result of numerical analysis for the linear cutting test, the rolling force acting on the disc cutter was analyzed to be similar to the rolling force derived from the theoretical formula of the CSM model. From the numerical analysis on 5 UCS cases (50 MPa, 70 MPa, 100 MPa, 150 MPa, 200 MPa), it is found that the range of the optimum spacing of the disc cutter decreases as the rock strength increases. And it can be concluded that 80~100 mm of disc cutter spacing is the optimum range having minimum specific energy regardless of rock strength. This tends to coincide with the optimal spacing of previously reported disk cutters, which underpins the disk cutter spacing calculated through this study.

Refurbishment of a 3.6 m earth-pressure balanced shield TBM with a domestic cutterhead and its field verification (국산 커터헤드를 장착한 직경 3.6 m 토압식 쉴드TBM의 제작과 현장적용성 분석)

  • Bae, Gyu-Jin;Chang, Soo-Ho;Choi, Soon-Wook;Kang, Tae Ho;Kwon, Jun-Yong;Shin, Min-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.4
    • /
    • pp.457-471
    • /
    • 2015
  • A domestic cutterhead with the diameter of 3.6 m was designed and manufactured in this study. Then, it was attached to an existing earth-pressure balanced shield TBM to excavate a cable tunnel with the length of 1,275 m. Especially, the procedures for TBM cutterhead design and its corresponding performance prediction were also summarized. From field data analyses of the refurbished shield TBM, its maximum advance rate was recorded as 14.4 m/day. Penetration depths of disc cutters were found to be approximately 4 mm/rev, which is equal to the maximum penetration depth designed for the strongest rock strength condition in the target tunnel. Every TBM operating thrust and cutter normal force during TBM driving was much smaller than their corresponding maximum capacities. When cutter acting forces recorded in the field were analyzed, their prediction errors by the CSM model were very high for weak rock conditions. In addition, rock strength showed very close relationships with cutter normal force and penetration depth.

Prediction of the optimum cutting condition of TBM disc cutter in Korean granite by the linear cutting test (선형절삭시험에 의한 TBM 디스크 커터의 최적 절삭조건 예측)

  • Park, Gwan-In;Jang, Su-Ho;Choe, Sun-Uk;Jeon, Seok-Won
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2006.03a
    • /
    • pp.217-236
    • /
    • 2006
  • In this study, the LCM was applied as the preliminary study for the cutterhead design of TBM and the drilling performance evaluation. The optimum cutting condition is obtained from the LCM tests and the effects of the design factors of IBM cutterhead, such as penetration depth and cutter spacing, on drilling performance are estimated. In this study, hence, to predict the accurate performance of TBM, instead of one-dimensional penetration depth applied in existing studies, three-dimensional cutting volume was quantified and measured. For this, the digital photogrammetry technique was applied to the LCM tests. Also, AUTODYN 2D was applied to investigate the applicability of the numerical analysis technique to simulate the cutting process of rock by the TBM disc cutter.

  • PDF

A Study on the Prediction of Disc Cutter Wear Using TBM Data and Machine Learning Algorithm (TBM 데이터와 머신러닝 기법을 이용한 디스크 커터마모 예측에 관한 연구)

  • Tae-Ho, Kang;Soon-Wook, Choi;Chulho, Lee;Soo-Ho, Chang
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.502-517
    • /
    • 2022
  • As the use of TBM increases, research has recently increased to to analyze TBM data with machine learning techniques to predict the exchange cycle of disc cutters, and predict the advance rate of TBM. In this study, a regression prediction of disc cutte wear of slurry shield TBM site was made by combining machine learning based on the machine data and the geotechnical data obtained during the excavation. The data were divided into 7:3 for training and testing the prediction of disc cutter wear, and the hyper-parameters are optimized by cross-validated grid-search over a parameter grid. As a result, gradient boosting based on the ensemble model showed good performance with a determination coefficient of 0.852 and a root-mean-square-error of 3.111 and especially excellent results in fit times along with learning performance. Based on the results, it is judged that the suitability of the prediction model using data including mechanical data and geotechnical information is high. In addition, research is needed to increase the diversity of ground conditions and the amount of disc cutter data.

Evaluation of Penetration Rate and Cutter Life of TBM in Jook-Ryung Tunnel (죽령터널에서의 TBM 굴착속도 및 커터수명 평가연구)

  • Park Chul-Whan;Synn Joong-Ho;Park Yeon-Jun;Jeon Seok-Won;An Hyung-Jun
    • Tunnel and Underground Space
    • /
    • v.15 no.5 s.58
    • /
    • pp.378-386
    • /
    • 2005
  • Jook-Ryung roadway tunnel was constructed by drill-blast after pilot tunnelling by 2 TBMS. nis report analyzes the data for TBM performance in the total length of 7.3 km for the two pilot tunnels. Net penetration rates were recorded as high as 2.3 m/h and 2.0 m/h for the two different directions while degrees of operation were $31.4\%$ and $33.3\%$, respectively. The cutter lives for No.2 tunnel were evaluated $200\~280\;m^3/c$ and around 400 m/set as high as for Meraker 10 km tunnel in Norway. The relationship between net penetration rate and characteristics of rock mass which were obtained by RMR and TSP measurement, coincides with the prior studies. This kind of evaluation is expected to be used to design TBM tunnelling and to help to perform the TBM operation effectively

Characterization of the deformation of a disc cutter in linear rock cutting test (암석의 선형절삭실험에 의한 디스크커터의 변형특성 평가)

  • Chang, Soo-Ho;Choi, Soon-Wook;Park, Young-Taek;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.3
    • /
    • pp.197-213
    • /
    • 2012
  • Disc cutter is a key cutting tool for rock excavation by TBMs. This study aimed to characterize the deformation of a cutter ring by strain measurement as well as infrared thermal camera measurement during a series of linear cutting tests for a hard rock. The strain measurement results indicated that the cutter ring clearly showed a linear elastic behavior. The data obtained from the infrared thermal camera measurement demonstrated that the maximum temperature increase in the cutter ring was below $14.4^{\circ}C$. The deformation and temperature increase of the cutter ring during rock cutting were insignificant in a given cutting test condition of this study.

Improvement of Tunnelling Speed in Full-Face Mechanical Excavation (기계굴착에서 굴착속도의 발전경향분석)

  • Park, Chul-Whan;Park, Chan;Cheon, Dae-Sung;Synn, Joong-Ho
    • Tunnel and Underground Space
    • /
    • v.17 no.3 s.68
    • /
    • pp.225-233
    • /
    • 2007
  • Because of Norwegian topography as valleys and fjords, a large number of tunnels has been built and 59 of them have been excavated by TBM for last 30 years. Prognosis technology has been developed and improved through lots of TBM experiences, and the NTNU prediction model has been completed. This paper focuses the improvement of net penetration rate and advance rate in 14 Norwegian and 4 Koran TBM tunnelling sites of which data were reported. Through this period, net penetration rate as well as advance rate were increased to double with the improvement of disc cutter size and cutter arrangement in Norway. These rates in Korea were also increased for 15 years even though the rates were lower compared to Norwegian. It is estimated that these low rates were mainly caused by using disc cutters less than 17 inch diameter. It is expected that net penetration rate and advance rate can be increased by improvement of machine and tunnelling technology, especially by using 17 or 19 inch of the disc cutter size in the Korean full face mechanical tunnelling site.

Numerical Analysis on Fragmentation Mechanism by Indentation of Disc Cutter in a Rock Specimen with a Single Joint (단일절리를 포함한 암석 시험편에서 디스크 커터의 압입에 의한 파괴 메커니즘의 수치해석적 연구)

  • Lee, Seung-Joong;Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.440-449
    • /
    • 2009
  • LCM test is one of the most powerful and reliable methods of experiment for the cutter head design and the performance prediction of TBM. In many cases, however, the predicted design model can be directly applied to the field design, because this test may have an uppermost limit in preparation and/or transportation of the large size rock samples and the test for the jointed rock mass is not easy. When the proper and reasonable numerical modeling is considered to overcome this limit, the most adequate cutter head design for TBM could be presented without any complicate preconsideration in the field. In this study, the crack propagation patterns dependent on the contact point of disc cutter and the angle of rock joint are analyzed for the rock specimen with a single joint using the UDEC. The authors could derive the appropriate contact points of disc cutters and their space with respect to the joint angle in rock mass thru the numerical analysis.

Case study: application of NAT (New Abrasion Tester) for predicting TBM disc cutter wear and comparison with conventional methods (TBM 디스크 커터 마모 예측에 대한 NAT의 현장 적용 및 기존 방법과의 비교)

  • Kim, Dae-Young;Shin, Young-Jin;Jung, Jae-Hoon;Kang, Han-Byul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1091-1104
    • /
    • 2018
  • Wear prediction of TBM disc cutters is a very important issue during design as well as construction stages for hard rock TBMs as the cutter head intervention is directly related to the time and cost of tunneling. For that, some methods such as NTNU, CSM and Gehring models were used to predict disc cutter wear and intervention interval. There are however some problems to be addressed in these models in terms of accuracy and time for testing, so that a NAT (New Abrasion Tester) model has been developed in order to achieve simplicity and reliability together at the same time (Farrokh and Kim, 2018). On the basis, the proposed NAT model has been applied to ${\bigcirc}{\bigcirc}$ project in Korea. A comparative study was performed to compare with the conventional methods and as a result the NAT model showed a very good agreement with actual cutter life. The NAT model will be further applied to other projects to establish credibility.

Development of disc cutter wear sensor prototype and its verification for ensuring construction safety of utility cable tunnels (전력구 터널 건설안전 확보를 위한 디스크커터 마모측정시스템 시작품 개발 및 성능검증)

  • Jung Joo Kim;Hee Hwan Ryu;Seung Woo Song;Seung Chul Do;Ji Yun Lee;Ho Young Jeong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.91-111
    • /
    • 2024
  • Most of utility cable tunnels are constructed utilizing shield TBM as part of the underground transmission line project. The TBM chamber is the only space inside the tunnel that encounters rock and soil, and is the place with the highest frequency of accident exposure, such as collapse and collision accidents. Since there is currently no way to measure the disc cutter wear from outside the chamber, frequent inspection by workers is essential. Accordingly, in this study, in order to prevent safety accidents inside the TBM chamber and expect the effect of shortening the construction period by reducing the number of chamber openings, the concept of disk cutter wear measurement technology was established and a prototype was produced. By considering prior technology and determining that magnetic sensors are most suitable for the excavation environment, wear measurement sensor package were developed integrating magnetic sensors, wireless communication modules, power supply, external casing, and monitoring systems. To verify the performance of the prototype in an actual excavation environment, a full-scale tunnelling test was performed using a 3.6 m EPB shield TBM. Based on the full-scale tests, five prototypes were operated normally among eight prototypes. It was analyzed that sensor measurement, wireless communication, and durability performance were secured within a maximum thrust of 3,000 kN and a rotation speed of 1.5 RPM.