• Title/Summary/Keyword: TAnk Model

Search Result 1,309, Processing Time 0.026 seconds

Highly Efficient PIV Measurement of Complex Flows Using Refractive Index Matching Technique

  • NISHINO Koichi;KAWAGUCHI Daisuke;KOSUGI Takashi;ISODA Haruo
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.57-63
    • /
    • 2004
  • various applications is presented. It is based on rapid-prototyping of transparent model for flow visualization and on the use of refractive index matching that enables efficient and clear visualization of the flow inside the model. The model is immersed in the index-matching fluid in a glass tank so that any displacement and rotation of the model in the tank have no influence on the optical setup for image acquisition to be made through a glass wall. This can facilitate greatly the camera calibration for stereo PIV and 3-D PTV. As the flow model is generated directly from 3-D surface data, no laborious preparation of the flow model is needed. This approach for seamless linking of model generation and PIV measurement is applicable to various flow measurements in automobile, ship building, fluid machinery, turbine, electrical appliances, heat exchanger, electronic cooling, bio-engineering and so on.

  • PDF

Seismic Fragility Analysis of Ground Supported Horizontal Cylindrical Tank (수평원통형 저장탱크의 지진취약도 해석)

  • Chaulagain, Nabin Raj;Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.145-151
    • /
    • 2019
  • The fragility analyses for the partially filled horizontal cylindrical tank having a flexible wall were conducted to evaluate seismic performance. An equivalent simplified model with two lumped masses representing to impulsive and convective masses was used to represent the liquid storage system. This simplified model was validated by comparing its time history analysis results with the 3D FSI model results. The horizontal tank was analyzed under bi-directional excitations. Seismic fragility curves for the stability were developed in transverse and longitudinal directions. Fragility curves show that seismic damage for the horizontal storage system is more susceptible in the transverse direction.

Mathematical Model Simulations Assessing the Effects of Temperature on Residual Chlorine Concentrations in Water Storage Tanks (온도 변화에 따른 수돗물 저장 저수조 내 잔류염소에 관한 수학적 모형 시뮬레이션)

  • Noh, Yoorae;Park, Joonhong
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.2
    • /
    • pp.187-196
    • /
    • 2017
  • To ensure hygienic safety of drinking water in a water storage tank, the concentrations of residual chlorine should be above a certain regulation level. In this study, we conducted model simulations to investigate the effects of temperature on residual chlorine in water storage tank conditions typically used in Seoul. For this, values of model parameters (decomposition rate constant, sorption coefficient, and evaporation mass transfer coefficient) were experimentally determined from laboratory experiments. The model simulations under continuous flow conditions showed that the residual chlorine concentrations were satisfied the water quality standard level (0.1 mg/L) at all the temperature conditions ($5^{\circ}C$, $10^{\circ}C$, $15^{\circ}C$, $20^{\circ}C$ and $25^{\circ}C$). Meanwhile, when the tanks had a no flow condition (i.e., no tap-water influent due to a sudden shut-down), the concentrations became lower than the regulatory level after certain periods. The findings from this modeling works simulating Seoul's water storage tanks suggested disappearance rate of residual chlorine could be reduced through the tanks design optimization with maintenance of low water temperature, minimization of air flow and volume, suppression of dispersion and the use of wall materials with low sorption ability.

Development of the Analyzing Method for Earth Retaining Cantilever Walls using Stabilizing Piles (억지말뚝을 이용한 자립식 흙막이 공법의 해석기법 개발)

  • Kim, Chang-Young;Im, Jong-Chul;Park, Lee-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.998-1007
    • /
    • 2006
  • In former times, It is obvious that the earth retaining cantilever wall using stabilizing piles is definitely superior to the other methods due to economical efficiency and the efficiency of construction through model tests using a soil tank and practical application(Kim, 2006). However, this method was not proved in theoretical basis from the viewpoint of geotechnical engineering. Accordingly, a variety of model experiments in order to analyze the behavior of the earth retaining cantilever wall and stabilizing piles according to excavation step and earth pressure and stress acting on stabilizing piles according to excavation step were performed. On the basis of analyzing the result of model tests using a soil tank, this study suggests failure mechanism of clods and a method calculating virtual supported point. In addition, this study contributes to developing the analyzing method of retaining piles, stabilizing piles and beams connecting two piles and, this study helps this method to be established as a new design method through analyzing the results of model tests using a soil tank.

  • PDF

Comparison of Automatic Calibration for a Tank Model with Optimization Methods and Objective Functions

  • Kang, Min-Goo;Park, Seung-Woo;Park, Chang-Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.7
    • /
    • pp.1-13
    • /
    • 2002
  • Two global optimization methods, the SCE-UA method and the Annealing-simplex (A-S) method for calibrating a daily rainfall-runoff model, a Tank model, was compared with that of the Downhill Simplex method. The performance of the four objective functions, DRMS (daily root mean square), HMLE (heteroscedastic maximum likelihood estimator), ABSERR (mean absolute error), and NS (Nash-Sutcliffe measure), was tested and synthetic data and historical data were used. In synthetic data study. 100% success rates for all objective functions were obtained from the A-S method, and the SCE-UA method was also consistently able to obtain good estimates. The downhill simplex method was unable to escape from local optimum, the worst among the methods, and converged to the true values only when the initial guess was close to the true values. In the historical data study, the A-S method and the SCE-UA method showed consistently good results regardless of objective function. An objective function was developed with combination of DRMS and NS, which putted more weight on the low flows.

Study on seismic response of a seismic isolation liquid storage tank

  • Xiang Li;Jiangang Sun;Lei Xu;Shujin Zhang;Lifu Cui;Qinggao Zhang;Lijie Zhu
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.337-348
    • /
    • 2024
  • This paper presents a new seismic isolation design for liquid storage tank (LST). The seismic isolation system includes: LST, flexible membrane, sand mat and rolling seismic isolation devices. Based on the mechanical equilibrium theory, the symmetric concave rolling restoring force model of the isolation device is derived. Based on the elasticity theory and restoring force model of the seismic isolation, a simplified mechanical model of LST with the new seismic isolation is established. The rationality of the seismic isolation design of LST is explored. Meanwhile, the seismic response of the new seismic isolation LST is investigated by numerical simulation. The results show that the new seismic isolation tank can effectively reduce the seismic response, especially the control of base shear and overturning moment, which greatly reduces the risk of seismic damage. The seismic reduction rate of the new seismic isolation storage tanks in Class I, II, and III sites is better than that in Class IV sites. Moreover, the seismic isolation device can effectively control the ground vibration response of storage tanks with different liquid heights. The new seismic isolation LST design provides better isolation for slender LSTs than for broad LSTs.

Time Domain Fatigue Analysis on the Upper Rolling Chock of IMO Type B Tank (IMO Type B 탱크 상부 Rolling Chock에 대한 시간영역 피로해석)

  • Park, Myong-Jin;Park, Jun-Seok;Won, Sun-Il;Choi, Byung-Ki;Park, Kweong-Won;Paik, Young-Min;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.380-387
    • /
    • 2016
  • Present research target to develop the procedure of long-term fatigue analysis of the structural details near the upper rolling chock of IMO type B tank by using the time domain modal analysis technique where both the contact and friction behavior can be accurately simulated. In order to perform the time domain analysis focused on the contact and friction, the entire model of the hull and tank was condensed with DOF reduction technique, which is obtained by transforming the global finite element model into its quasi-static modal coordinate. Modal analysis using the quasi-static deformation modes is chosen as a cost effective time domain simulation method and this is based on the fact that the structural response of the tank is quasi-static. Based on the developed cost effective time domain simulation method, the long-term fatigue analysis procedure for the structural details near the rolling chock and key of independent type tank is targeted to be established. The developed fatigue assessment procedure takes into account, wave induced stress and both contact and friction induced stress without loss of accuracy.

Research on Buried Depth Dependent Characteristics of Potential Rise for Structure (구조물 전위상승의 매설깊이 의존특성에 관한 연구)

  • Gil, Hyoung-Jun;Kim, Hyang-Kon;Kim, Dong-Ook;Choi, Chung-Seog
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.2
    • /
    • pp.104-108
    • /
    • 2007
  • This paper deals with an approach to the reduction of potential rise according to the buried depth of structure. In order to analyze the surface potential rise of structure, an electrolytic tank which simulates the semi-infinite earth has been used. The potential rise has been measured and analyzed for types of structure using an electrolytic tank experimental apparatus in real time. The structure models were designed through reducing real buildings and fabricated with four types on a scale of one-one hundred sixty. When a test current flowed through structure models, potential gradient was the highest value in case of the outline frame type(structure model A). The distributions of surface potential rise are dependent on the resistivity and absorption percentage in concrete attached to structure model.

Numerical Study on Flow Patterns of Impeller's Type in a Stirred Tank (혼합탱크 내의 임펠라 형태에 따른 유동 특성에 관한 수칙해석)

  • Oh, Sueg-Young;Song, Gil-Sub
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.454-459
    • /
    • 2001
  • The present study is concerned with the flow patterns induced by other impellers in a rectangular tank Impellers are FBT(Flat blade turbine), PBT(Pitched blade turbine), Shroud turbine, Rushton Turbine, and Helical ribbon turbine. The solution of flows in moving reference frames requires the use of 'moving' cell zone. The moving zone approaches are MRF(Multiple reference frame), which is a steady-state approximation and Sliding method, which is a unsteady-state approximation. Numerical results using two moving zone approaches are compared with experiments by Ranade & Joshi, which have done extensive LDA measurements of the flow generated by a standard six-bladed Rushton turbine in a cylindrical baffled vessel. In this paper we simulated the flow patterns with above mentioned moving zone approaches and impellers. Turbulence model is RNG k-$\epsilon$ model.

  • PDF

Fault Detection and Diagnosis of the Deaerator Level Control System in Nuclear Power Plants

  • Kim Kyung Youn;Lee Yoon Joon
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.73-82
    • /
    • 2004
  • The deaerator of a power plant is one of feedwater heaters in the secondary system, and it is located above the feedwater pumps. The feedwater pumps take the water from the deaerator storage tank, and the net positive suction head(NSPH) should always be ensured. To secure the sufficient NPSH, the deaerator tank is equipped with the level control system of which level sensors are critical items. And it is necessary to ascertain the sensor state on-line. For this, a model-based fault detection and diagnosis(FDD) is introduced in this study. The dynamic control model is formulated from the relation of input-output flow rates and liquid-level of the deaerator storage tank. Then an adaptive state estimator is designed for the fault detection and diagnosis of sensors. The performance and effectiveness of the proposed FDD scheme are evaluated by applying the operation data of Yonggwang Units 3 & 4.