• Title/Summary/Keyword: TAN-TAN

Search Result 2,193, Processing Time 0.111 seconds

Dihydroaustrasulfone alcohol induces apoptosis in nasopharyngeal cancer cells by inducing reactive oxygen species-dependent inactivation of the PI3K/AKT pathway

  • Kok-Tong Tan;Yu-Hung Shih;Jiny Yin Gong;Xiang Zhang;Chiung-Yao Huang;Jui-Hsin Su;Jyh-Horng Sheu;Chi-Chen Lin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.383-398
    • /
    • 2023
  • Dihydroaustrasulfone alcohol (DA), the synthetic precursor of a natural compound (austrasulfone) isolated from the coral species Cladiella australis, has shown cytotoxic effects against cancer cells. However, it is unknown whether DA has antitumor effects on nasopharyngeal carcinoma (NPC). In this study, we determined the antitumor effects of DA and investigated its mechanism of action on human NPC cells. The MTT assay was used to determine the cytotoxic effect of DA. Subsequently, apoptosis and reactive oxygen species (ROS) analyses were performed by using flow cytometry. Apoptotic and PI3K/AKT pathway-related protein expression was determined using Western blotting. We found that DA significantly reduced the viability of NPC-39 cells and determined that apoptosis was involved in DA-induced cell death. The activity of caspase-9, caspase-8, caspase-3, and PARP induced by DA suggested caspase-mediated apoptosis in DA-treated NPC-39 cells. Apoptosis-associated proteins (DR4, DR5, FAS) in extrinsic pathways were also elevated by DA. The enhanced expression of proapoptotic Bax and decreased expression of antiapoptotic BCL-2 suggested that DA mediated mitochondrial apoptosis. DA reduced the expression of pPI3K and p-AKT in NPC-39 cells. DA also reduced apoptosis after introducing an active AKT cDNA, indicating that DA could block the PI3K/AKT pathway from being activated. DA increased intracellular ROS, but N-acetylcysteine (NAC), a ROS scavenger, reduced DA-induced cytotoxicity. NAC also reversed the chances in pPI3K/AKT expression and reduced DA-induced apoptosis. These findings suggest that ROS-mediates DA-induced apoptosis and PI3K/AKT signaling inactivation in human NPC cells.

Effect of perlite powder on properties of structural lightweight concrete with perlite aggregate

  • Yan, Gongxing;Al-Mulali, Mohammed Zuhear;Madadi, Amirhossein;Albaijan, Ibrahim;Ali, H. Elhosiny;Algarni, H.;Le, Binh Nguyen;Assilzadeh, Hamid
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.393-411
    • /
    • 2022
  • A high-performance reactive powder concrete (RPC) has been readied alongside river sand, with 1.25 mm particle size when under the condition of 80C steam curing. As a heat and sound insulation, expanded perlite aggregate (EPA) provides economic advantages in building. Concrete containing EPA is examined in terms of cement types (CEM II 32.5R and CEM I 42.5R), doses (0, 2%, 4% and 6%) as well as replacement rates in this research study. The compressive and density of concrete were used in the testing. At the end of the 28-day period, destructive and nondestructive tests were performed on cube specimens of 150 mm150 mm150 mm. The concrete density is not decreased with the addition of more perlite (from 45 to 60 percent), since the enlarged perlite has a very low barrier to crushing. To get a homogenous and fluid concrete mix, longer mixing times for all the mix components are necessary due to the higher amount of perlite. As a result, it is not suggested to use greater volumes of this aggregate in RPC. In the presence of de-icing salt, the lightweight RPC exhibits excellent freeze-thaw resistance (mass is less than 0.2 kg/m2). The addition of perlite strengthens the aggregate-matrix contact, but there is no apparent ITZ. An increased compressive strength was seen in concretes containing expanded perlite powder and steel fibers with good performance.

Developing an Evacuation Evaluation Model for Offshore Oil and Gas Platforms Using BIM and Agent-based Model

  • Tan, Yi;Song, Yongze;Gan, Vincent J.L.;Mei, Zhongya;Wang, Xiangyu;Cheng, Jack C.P.
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.32-41
    • /
    • 2017
  • Accidents on offshore oil and gas platforms (OOGPs) usually cause serious fatalities and financial losses considering demanding environment platforms locate and complex topsides structure platforms own. Evacuation planning on platforms is usually challenging. The computational tool is a good choice to plan evacuation by emergency simulation. However, the complex structure of platforms and varied evacuation behaviors usually weaken the advantages of computational simulation. Therefore, this study developed a simulation model for OOGPs to evaluate different evacuation plans to improve evacuation performance by integrating building information modeling (BIM) and agent-based model (ABM). The developed model consists of four parts: evacuation model input, simulation environment modeling, agent definition, and simulation and comparison. Necessary platform information is extracted from BIM and then used to model simulation environment by integrating matrix model and network model. During agent definition, in addition to basic characteristics, environment sensing and dynamic escape path planning functions are also developed to improve simulation performance. An example OOGP BIM topsides with different emergent scenarios is used to illustrate the developed model. The results showed that the developed model can well simulate evacuation on OOGPs and improve evacuation performance. The developed model was also suggested to be applied to other industries such as the architecture, engineering, and construction industry.

  • PDF

Experimental study on energy dissipation and damage of fabricated partially encased composite beams

  • Wu, Kai;Liu, Xiaoyi;Lin, Shiqi;Tan, Chengwei;Lu, Huiyu
    • Computers and Concrete
    • /
    • v.30 no.5
    • /
    • pp.311-321
    • /
    • 2022
  • The interfacial bond strength of partially encased composite (PEC) structure tends to 0, therefore, the cast-in-place concrete theoretically cannot embody better composite effect than the fabricated structure. A total of 12 specimens were designed and experimented to investigate the energy dissipation and damage of fabricated PEC beam through unidirectional cyclic loading test. Because the concrete on both sides of the web was relatively independent, some specimens showed obvious asymmetric concrete damage, which led to specimens bearing torsion effect at the later stage of loading. Based on the concept of the ideal elastoplastic model of uniaxial tensile steel and the principle of equivalent energy dissipation, the energy dissipation ductility coefficient is proposed, which can simultaneously reflect the deformability and bearing capacity. In view of the whole deformation of the beam, the calculation formula of energy dissipation is put forward, and the energy dissipation and its proportion of shear-bending region and pure bending region are calculated respectively. The energy dissipation efficiency of the pure bending region is significantly higher than that of the shear-bending region. The setting of the screw arbors is conducive to improving the energy dissipation capacity of the specimens. Under the condition of setting the screw arbors and meeting the reasonable shear span ratio, reducing the concrete pouring thickness can lighten the deadweight of the component and improve the comprehensive benefit, and will not have an adverse impact on the energy dissipation capacity of the beam. A damage model is proposed to quantify the damage changes of PEC beams under cyclic load, which can accurately reflect the load damage and deformation damage.

Theoretical analysis of e-commerce in global economic market in terms of benefits and disadvantageous

  • He, Xiaoqiang;Li, Jialing;Hani, Ibrahim Rasool;Nhu, B.N.;Assilzadeh, H.;Ali, H. Elhosiny;Elattar, Samia
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.545-556
    • /
    • 2022
  • Through the examination of literatures, electronic commerce is a subject which is accepted in enterprises to define e-commerce adoption, trends, and issues that are assisting and obstructing its efficacy. E-commerce offers numerous advantages to consumer satisfaction in any place and helps the company to get a competitive benefit over its competitors. The Internet has expanded the scope of business. Many business information is available by the global network that supports information gathering between organizations, businesses and their clients, while various divisions of a business is increasing at an exponential rate. Meanwhile, there are a few barriers to proper e-commerce usage and adoption, such as reliable internet connections, poor e-commerce supporting infrastructures, logistics systems presenting socio-regulatory and poor transportation barriers and demonstrating the significant improvement of e-commerce reliable and affordable Internet provisions, i.e., Internet cost, intensity, and reasonable level of e-readiness. The operational and strategic significance of information-based virtual value chains for all organizations cannot be emphasized. As a consequence, this study confirms worldwide market elements of e-commerce, such as its issues, benefits, relevance, scope, facilitators and projects prospective obstacles in a developing economy.

Development of digital twin-based autonomous ship communication tool for smart shipping and logistics (스마트 해운물류를 위한 디지털 트윈 기반 자율운항선박 커뮤니케이션 도구 개발)

  • Koo Hanmo;Cho Yuseong;Cho Yongdeok;Cho Minje
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.333-335
    • /
    • 2022
  • The changes caused by the 4th industrial revolution are accelerating the convergence of technologies due to the COVID-19 Pandemic. As a result, rapid changes are expected in various fields of society and industry. The shipping and logistics industry is also in urgent need of smartization due to changes in environment and technology. However, in the case of Korea, the smartization of shipping and logistics technology is insufficient compared to that of advanced countries. For smartization for complex business processing with many related entities, smooth communication and visual confirmation using the latest technologies are becoming important. Such visualization and communication will become more important in smart shipping and logistics This study intends to present an integrated communication tool between self-driving ships and container terminals for the realization of smart shipping and logistics. In particular, a study was conducted on the development of a digital twin-based communication tool that satisfies the requirements of ship berthing and loading/unloading operations in which various actors participate and process complex tasks.

  • PDF

Edge perturbation on electronic properties of boron nitride nanoribbons

  • K.L. Wong;K.W. Lai;M.W. Chuan;Y. Wong;A. Hamzah;S. Rusli;N.E. Alias;S. Mohamed Sultan;C.S. Lim;M.L.P. Tan
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.385-399
    • /
    • 2023
  • Hexagonal boron nitride (h-BN), commonly referred to as Boron Nitride Nanoribbons (BNNRs), is an electrical insulator characterized by high thermal stability and a wide bandgap semiconductor property. This study delves into the electronic properties of two BNNR configurations: Armchair BNNRs (ABNNRs) and Zigzag BNNRs (ZBNNRs). Utilizing the nearest-neighbour tight-binding approach and numerical methods, the electronic properties of BNNRs were simulated. A simplifying assumption, the Hamiltonian matrix is used to compute the electronic properties by considering the self-interaction energy of a unit cell and the interaction energy between the unit cells. The edge perturbation is applied to the selected atoms of ABNNRs and ZBNNRs to simulate the electronic properties changes. This simulation work is done by generating a custom script using numerical computational methods in MATLAB software. When benchmarked against a reference study, our results aligned closely in terms of band structure and bandgap energy for ABNNRs. However, variations were observed in the peak values of the continuous curves for the local density of states. This discrepancy can be attributed to the use of numerical methods in our study, in contrast to the semi-analytical approach adopted in the reference work.

Effect of unequal spans on the collapse behavior of multi-story frames with reduced beam section connections

  • Zheng Tan;Wei-hui Zhong;Bao Meng;Li-min Tian;Yao Gao;Yu-hui Zheng;Hong-Chen Wang
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.107-122
    • /
    • 2024
  • Following an internal column failure, adjacent double-span beams above the failed column will play a critical role in the load transfer and internal force redistribution within the remaining structure, and the span-to-depth ratios of double-span beams significantly influence the structural resistance capacity against progressive collapse. Most existing studies have focused on the collapse-resistant performances of single-story symmetric structures, whereas limited published works are available on the collapse resistances of multi-story steel frames with unequal spans. To this end, in this study, numerical models based on shell elements were employed to investigate the structural behavior of multi-story steel frames with unequal spans. The simulation models were validated using the previous experimental results obtained for single- and two-story steel frames, and the load-displacement responses and internal force development of unequal-span three-story steel frames under three cases were comprehensively analyzed. In addition, the specific contributions of the different mechanism resistances of unequal-span, double-span beams of each story were separated quantitatively using the energy equilibrium theory, with an aim to gain a deeper level of understanding of the load-resistance mechanisms in the unequal-span steel frames. The results showed that the axial and flexural mechanism resistances were determined by the span ratio and linear stiffness ratio of double-span beams, respectively.

Ginsenoside Rg1 promotes neurite growth of retinal ganglion cells through cAMP/PKA/CREB pathways

  • Ye-ying Jiang ;Rong-yun Wei;Kai Tang;Zhen Wang;Ning-hua Tan
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.163-170
    • /
    • 2024
  • Background: Mechanisms of synaptic plasticity in retinal ganglion cells (RGCs) are complex and the current knowledge cannot explain. Growth and regeneration of dendrites together with synaptic formation are the most important parameters for evaluating the cellular protective effects of various molecules. The effect of ginsenoside Rg1 (Rg1) on the growth of retinal ganglion cell processes has been poorly understood. Therefore, we investigated the effect of ginsenoside Rg1 on the neurite growth of RGCs. Methods: Expression of proteins and mRNA were detected by Western blot and qPCR. cAMP levels were determined by ELISA. In vivo effects of Rg1 on RGCs were evaluated by hematoxylin and eosin, and immunohistochemistry staining. Results: This study found that Rg1 promoted the growth and synaptic plasticity of RGCs neurite by activating the cAMP/PKA/CREB pathways. Meanwhile, Rg1 upregulated the expression of GAP43, Rac1 and PAX6, which are closely related to the growth of neurons. Meantime, H89, an antagonist of PKA, could block this effect of Rg1. In addition, we preliminarily explored the effect of Rg1 on enhancing the glycolysis of RGCs, which could be one of the mechanisms for its neuroprotective effects. Conclusion: Rg1 promoted neurite growth of RGCs through cAMP/PKA/CREB pathways. This study may lay a foundation for its clinical use of optic nerve diseases in the future.

A Case Study of Decision-Making Towards Using Online Food Distribution Services After Covid-19 In Vietnam

  • Thuc Duc TRAN;Thong Van PHAM;Phu Cam Thi NGUYEN;Loc Tan LOUIS;Ngoc Nhu Thi LE
    • Journal of Distribution Science
    • /
    • v.22 no.3
    • /
    • pp.33-47
    • /
    • 2024
  • Purpose: Most emerging-market countries are concerned about the technology boom, which is accompanied by an increase in revenue from online sales and services. This finding has been demonstrated during the COVID-19 pandemic; however, is this tendency continuing in the new normal, and what factors are driving the increase in consumer decisions? The purpose of this research is to investigate how the decision to utilize online services will be affected in the new normal as well as propose a new research approach in this field. Research Design, Methodology and Approach: By following a deductive research method associated with positivist philosophy, a survey in South Vietnam with 426 respondents using a convenience sampling method was conducted. The reliability of the measurement scales was examined by using the SPSS program. The SmartPLS programme was utilised to assess the measurement and structural models as well as test hypotheses by using partial least squares structural equation modelling. Results: According to the research findings, decision-making has been impacted by social influences, perceived usefulness, perceived ease of use, perceived trust, perceived price, and perceived convenience. Conclusions: The research results also bring significant contributions not only in practice in providing management implications but also in theory. The research model has also demonstrated the feasibility of employing the stimuli-organism-response framework and combining the theory of perceived risk with the technology acceptance model via the explanation of decision-making.