• Title/Summary/Keyword: T7 gene 2.5 protein

Search Result 109, Processing Time 0.037 seconds

Funcyional Studies on Gene 2.5 Protein of Bacteriophage T7 : Protein Interactions of Replicative Proteins (박테리오파아지 T7 의 기능에 관한 연구;복제단백질간의 단백질 상호작용)

  • 김학준;김영태
    • Journal of Life Science
    • /
    • v.6 no.3
    • /
    • pp.185-192
    • /
    • 1996
  • Bacteriophage T7 gene 2.5 protein, a single-stranded DNA binding protein, is required for T7 DNA replication, recombination, and repair. T7 gene 2.5 protein has two distinctive domains, DNA binding and C-terminal domain, directly involved in protein-protein interaction. Gene 2.5 protein participates in the DNA replication of Bacteriophage T7, which makes this protein essential for the T7 growth and DNA replication. What gene 2.5 protein makes important at T7 growth and DNA replication is its binding affinity to single-stranded DNA and the protein-protein important at T7 DNA replication proteins which are essential for the T7 DNA synthesis. We have constructed pGST2.5(WT) encoding the wild-type gene 2.5 protein and pGST2.5$\Delta $21C lacking C-terminal 21 amino acid residues. The purified GST-fusion proteins, GST2.5(WT) and GST2.5(WT)$\Delta$21C, were used for whether the carboxyl-terminal domain participates in the protein-protein interactions or not. GST2.5(WT) and GST2.5$\Delta$21C showed the difference in the protein-protein interaction. GST2.5(WT) interacted with T7 DNA polymerase and gene 4 protein, but GST2.5$\Delta$21C did not interact with either protein. Secondly, GST2.5(WT) interacts with gene 4 proteins (helicase/primase) but not GST2.5$\Delta$21C. these results proved the involvement of the carboxyl-terminal domain of gene 2.5 protein in the protein-protein interaction. We clearly conclude that carboxy-terminal domain of gene 2.5 protein is firmly involved in protein-protein interactions in T7 replication proteins.

  • PDF

Biochemical and Molecular Biological Studies on the DNA Replication of Bacteriophage T7 (Bacteriophage T7의 유전자 복제기작에 관한 생화학적, 분자생물학적 특성 연구)

  • KIM Young Tae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.2
    • /
    • pp.209-218
    • /
    • 1995
  • Bacteriophage T7 gene 2.5 protein, a single-stranded DNA binding protein, has been implicated in T7 DNA replication, recombination, and repair. Purified gene 2.5 protein has been shown to interact with the phage encoded gene 5 protein (DNA polymerase) and gene 4 proteins (helicase and primase) and stimulates their activities. Genetic analysis of T7 phage defective in gene 2.5 shows that the gene 2.5 protein is essential for T7 DNA replication and growth. T7 phage that contain null mutants of gene 2.5 were constructed by homologous recombination. These mutant phage $(T7\Delta2.5)$ cannot grow in Escherichia coli. After infection of E. coli with $T7\Delta2.5$, host DNA synthesis is shut off, and $T7\Delta2.5$ DNA synthesis is reduced to less than $1\%$ of wild-type phage DNA synthesis (Kim and Richardson, 1993, Proc. Natl. Aca. Sci. USA, 90, 10173-10177). A truncated gene 2.5 protein $(GP2.5-\Delta21C)$ deleted the 21 carboxyl terminal amino acids was constructed by in vitro mutagenesis. $GP2.5-\Delta21C$ cannot substitute for wild-type gene 2.5 protein in vivo; the phage are not viable and exhibit less than $1\%$ of the DNA synthesis observed in wild-type phage-infected cells. $GP2.5-\Delta21C$ has been purified to apparent homogeneity from cells overexpressing its cloned gene. Purified $GP2.5-\Delta21C$ does not physically into「act with T1 gene 4 protein as measured by affinity chromatography and immunoblot analysis. The mutant protein cannot stimulate T7 gene 4 protein activity on RNA-primed DNA synthesis and primer synthesis. These results suggest that C-terminal domain of gene 2.5 protein is essential for protein-protein interactions.

  • PDF

Molecular and Biochemical Studies on the DNA Replication of Bacteriophage T7: Functional Analysis of Amino-terminal Region of Gene 2.5 Protein

  • Kim, Young-Tae;Lee, Sung-Gu;Kim, Hak-Jun
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.484-489
    • /
    • 1995
  • The product of bacteriophage T7 gene 2.5 is a single-stranded DNA binding protein and plays an important role in T7 DNA replication, recombination, and repair. Genetic analysis of T7 phage defective in gene 2.5 shows that the gene 2.5 protein is essential for T7 DNA replication and growth (Kim and Richardson, 1993). The C-terminal truncated gene 2.5 protein ($GP2.5-{\Delta}21C$) cannot substitute for wild-type gene 2.5 protein in vivo; suggesting that the C-terminal domain of gene 2.5 protein is essential for protein-protein interactions (Kim and Richardson, 1994; J. Biol. Chem. 269, 5070-5078). Truncated gene 2.5 proteins lacking 19 residues ($GP2.5-{\Delta}19N$) and 39 residues ($GP2.5-{\Delta}39N$) from the amino-terminal domain were constructed by in vitro mutagenesis. $GP2.5-{\Delta}19N$ can support the growth of T7 phage lacking gene 2.5 while $GP2.5-{\Delta}39N$ cannot substitute for wild-type gene 2.5 protein in vivo; however, its ability to bind to single-stranded DNA is not affected. These results clearly demonstrate that the 20~39 amino-terminal region of gene 2.5 protein is required for T7 growth in vivo but may not be involved in DNA binding activity.

  • PDF

The polymorphism of Theileria buffeli major surface protein associate with their clinical signs in holstein in Korea (국내 젖소에서 Theileria buffeli 주요 표면 단백질 유전자의 다양성 분석)

  • Yu, Do-Hyeon;Li, Ying-Hua;Chae, Joon-Seok;Park, Jin-Ho
    • Korean Journal of Veterinary Research
    • /
    • v.51 no.2
    • /
    • pp.107-115
    • /
    • 2011
  • Theileria (T.) buffeli (formerly T. sergenti/T. orientalis) is the major hemo-protozoan distributed in the Far East Asian countries such as Korea, China and Japan. It is responsible for the clinical symptoms of anorexia, ateliosis, anemia, fever and icterus. It also causes abortion and sudden death under severe cases, resulting in economic losses for many livestock farms. The objective of this study was to analyze the genetic diversity of the major surface protein (Msp) gene in T. buffeli in Holstein in Korea, and we characterized the association of the diversification of the Msp gene and its relationship with the pathogenicity of Theileria. For this, complete blood counts and Theileria PCR sequence analysis were performed from 57 Holstein in Jeju Island. A total of 26 PCR positive Holstein (16 anemic and 10 non-anemic) were then randomly selected based on 18s rRNA sequence typing of the Theileria Msp gene. The DNA sequence of the T. buffeli Msp gene in Holstein showed 99.0%, 99.2%, 99.9%, 99.5%, 98.7%, 98.4% and 98.4% homology with T. sergenti, Theileria spp., T. sergenti, Theileria spp., Theileria spp., Theileria spp. and Theileria spp., respectively. The result showed a genetic variation of 57.7% (type I), 3.8% (type II), 15.4% (type III), 7.7% (type IV), 13.5% (type V) and 1.9% (type VI). Type I is the most frequent type in both anemic and non-anemic Holstein while type II was found in only non-anemic Holstein. This results of our study help confirm the diversity of Msp gene types and demonstrate that the gene type distribution of Msp genes varies among Theileria-infected Holstein in Jeju Island.

Overproduction and Secretion of $\beta$-Glucosidase in Bacillus subtilis

  • Kim, Jeong-Hyun;Lee, Baek-Rak;Moo, young-Pack
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.141-145
    • /
    • 1998
  • Overproduction of intracellular ${\beta}$-glucosidase was attempted by modifying the promoter region of a ${\beta}$-glucosidase gene cloned from Cellulomonas fimi and expressing it in Bacillus subtilis DB 104. A strong engineered promoter, BJ27UΔ88, was fused to the ${\beta}$-glucosidase gene after removing its native promoter. An effective Shine-Dalgamo sequence (genel0 of phage T7) was inserted between the promoter and the ${\beta}$-glucosidase structural gene. The modified gene was overexpressed in B. subtilis and produced 1121.5 units of ${\beta}$-glucosidase per mg protein which is about $12\%$ of total intracellular protein. Secretion of overproduced intracellular ${\beta}$-glucosidase was attempted by using the signal sequence of the Bacillus endoglucanase gene as well as an in-frame hybrid protein of endoglucanase. The hybrid protein was normally secreted into the culture medium and still retained ${\beta}$-glucosidase activity.

  • PDF

Molecular Cloning and Analysis of the Genes in the Vicinity of Streptomyces griseus Trypsin (SGT) Gene from Streptomyces griseus ATCC10137 (Streptomyces griseus ATCC10137에서 Trypsin 유전자 sprT의 주변 유전자군 분석)

  • Chi Won-Jae;Kim Mi-Soon;Kim Jong-Hee;Kang Dae-Kyung;Hong Soon-Kwang
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.255-261
    • /
    • 2005
  • A 6.7kb DNA fragment containing the sprT gene encoding Streptomyces griseus trypsin (SGT) was cloned from Streptomyces griseus ATCC 10137, and the complete nucleotide sequence was determined. Nucleotide sequence and deduced amino acid or the EcoRI-HindIII fragment revealed the presence or the six complete ORFs containing the sprT gene and one incomplete ORF, which were named ORF1, SGT, ORF2, ORF3, ORF4, ORF5, and ORF6, respectively. ORF1 has homology with the oxidoreductases from several organisms. ORF2 and ORF3 show similarity with unknown proteins and transcription regulator that belongs to the ArsR family, respectively. ORF4 and ORF5 show homology with the peptidoglycan bound protein with LPXTG motif from Listeria monocytogenes and the membrane protein with transmembrane helix from several organisms, respectively. The last ORF, ORF6, shows homology with the lipoprotein from Streptomyces avermitilis.

pT7MT, a Metallothionein 2A-Tagged Novel Prokaryotic Fusion Expression Vector

  • Marikar, Faiz M.M.T.;Fang, Lei;Jiang, Shu-Han;Hua, Zi-Chun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.728-732
    • /
    • 2007
  • In the present article, a novel fusion expression vector for Escherichia coli was developed based on the pTORG plasmid, a derivative of pET32a. This vector, named pT7MT(GenBank Accession No DQ504436), carries a T7 promoter and it drives the downstream gene encoding Metallothionein 2A(MT2A). There are in-framed multiple cloning sites(MCS) downstream of the MT2A gene. A target gene can be cloned into the MCS and fused to the C-terminal of the MT2A gene in a compatible open reading frame(ORF) to achieve fusion expression. The metal-binding capability of MT2A allows the purification of fusion proteins by metal chelating affinity chromatography, known as $Ni^{2+}$-affinity chromatography. Using this expression vector, we successfully got the stable and high-yield expression of MT2A-GST and MT2A-Troponin I fusion proteins. These two proteins were easily purified from the supernatant of cell lysates by one-step $Ni^{2+}$-affinity chromatography. The final yields of MT2A-GST and MT2A-Troponin I were 30mg/l and 28mg/l in LB culture, respectively. Taken together, our data suggest that pT7MT can be applied as a useful expression vector for stable and high-yield production of fusion proteins.

Zoogloea ramigera 115SLR의 생고분자물질 생합성에 관여하는 pyruvyl transferase gene의 cloning 및 염기서열 결정

  • 이삼빈
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.4
    • /
    • pp.415-422
    • /
    • 1996
  • A gene coding for a pyruvyl transferase enzyme involved in exopolysaccharide biosynthesis of Zoogloea ramigera 115SLR was isolated and sequenced. A 4.5 kb of BamHI DNA fragment was isolated from chromosomal DNA using a probe derived from ketal pyruvyl transferase gene of Xanthomonas campestris. The nucleotide sequence of 2.66 kb Pst1/HindIII DNA fragment which was homology with a probe revealed the existence of two complete open reading frames (ORF2 and ORF3) and two partial open reading frames (ORFI and ORF4). The deduced amino acid sequence of ORF3 was homologous to the ketalase (GumL product) of X campestris with 49.5% of similarity and 21.6% of identity. ORF2 on the other hand showed the higher identity with the ketalase (ExoV product) of Rhizobium meliloti (36%) as well as the ketalase of X campestris (23%) than that of ORF3. A gene product of ORF2 was determined with a bacteriophage T7 RNA polymerase/promoter system in E. coli. The molecular weight of protein was 33,500 dalton.

  • PDF

Bacillus cellulyticus K-12 Crystalline Cellulose-Degrading Avicelase Gene and Expression in Eschterichia coli

  • Cheorl-Ho Kim;Woo
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.4
    • /
    • pp.314-321
    • /
    • 1993
  • We have cloned the Bacillus cellulyticus K-12 avicelase (Avi, E.C.3.2.1.4) gene (ace A) In E. coli. This was accompanied by using the vector PT7T3U 19 and Hind W -Hind m libraries of Bacillus cellulyticus K-12 chromosomal inserts created in 5.cofi. The Libraries were screened for the expression of avicelase by monitoring the immunoreaction of the anti-avicelase (immunoscreening). Positive clones (Ac-3, Ac-5, and Ac-7) contained the identical 3.5kb Hind III fragment as determined by restriction mapping and Southern hybridization, and expressed avicelase efficiently and constituvely using its own promoter in the heterologous host. From the immunoblotting analysis, a polypeptide which showed a CMCase activity with an Mr of 54000 was detected.

  • PDF

Detection of p53 Mutation in Colorectal Cancer Using PCR-SSCP and DHPLC (대장암에서 PCR-SSCP와 DHPLC를 이용한 p53 돌연변이의 검출)

  • Sang-Bum Park;Sang-Man Han;Youn-Hyoung Nam;Won-Cheoul Jang
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.5
    • /
    • pp.460-465
    • /
    • 2003
  • Structural alteration of p53 and overexpression of p53 protein are the most common genetic abnormalities in various kinds of human cancer. Mutations in the p53 tumor-suppressor gene are usually associated with an advanced development of colorectal cancer characterized by the transition from the adenoma to carcinoma stage. Mutations in exons 5-8 of the p53 gene were analyzed by the polymerase chain reaction-single strand conformation polymorphism(PCR-SSCP) and denaturing high performance liquid chromatography(DHPLC). SSCP analysis detected 7 mutations(C13109>T) in 50 colorectal cancer samples(14%) at exon 5, and DHPLC analysis detected 7 mutations (C13109>T) and 2 mutation(C13202>A, C13204>G) in 50 colorectal cancer samples(18%) at exon 5. All of 9 mutations were proved by sequencing analysis. We conclude that DHPLC is a highly sensitive and specific method for p53 gene mutations.