• Title/Summary/Keyword: T2-weighted imaging

Search Result 474, Processing Time 0.028 seconds

Magnetic Resonance Imaging Evaluation of the Prostate in Normal Dogs

  • Cho, Yu-Gyeong;Choi, Ho-jung;Lee, Ki-ja;Lee, Youngwon
    • Journal of Veterinary Clinics
    • /
    • v.37 no.6
    • /
    • pp.317-323
    • /
    • 2020
  • The aims of this study were to describe the appearance and size of the normal canine prostate using magnetic resonance (MR) imaging and to calculate the apparent diffusion coefficient (ADC) values. MR images were obtained from seven intact male beagle dogs using a 1.5 T MR unit. The sequences included pre- and post-contrast T1- and T2-weighted imaging with and without fat saturation. The signal intensity of the prostate was compared with the adjacent musculature, fat, and urine in the urinary bladder. We recorded the mean prostatic length, width, and height and the length of the sixth lumbar vertebral body (L6). In addition, the prostatic length (rL), width (rW), and height (rH) ratios to L6 were calculated. Diffusion-weighted images of the prostate were obtained and ADC values were calculated. The prostate was bilobed and oval-shaped, homogenous on T1-weighted images, and heterogeneous with radiating lines on T2-weighted images. Post-contrast T1-weighted sequences showed contrast enhancement of the central and radiating striations. The prostatic capsule was clearly identified on post-contrast T1-weighted images with fat saturation. The ADC values were 1.72-2.04 × 10-3mm2/sec (mean, 1.88 × 10-3mm2/sec). Knowledge of the normal appearance of the prostate on MR images is essential to assess prostatic diseases in dogs.

T1-, T2-weighted, and FLAIR Imaging: Clinical Application (T1, T2강조영상, FLAIR영상의 임상 적용)

  • Kim, Jae-Hyoung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • T1-, and T2-weighted imagings and FLAIR (fluid attenuated inversion recovery) imaging are fundamental imaging methods in the brain. T1-weighted imaging is a spin-echo sequence with short TR and short TE and produces the tissue contrast by different T1 relaxation times. In other words, short TR maximizes the difference of the longituidinal magnetization recovery between the tissues. T2-weighted imaging is a spin-echo sequence with long TR and long TE and produces the tissue contrast by different T2 relaxation times. Long TE maximizes the difference of the transverse magnetization decay between the tissues. FLAIR is an inversion recovery sequence using 180 degree inversion pulse. 2500 msec of inversion time is applied to suppress the CSF signal.

  • PDF

Comparative Study of the Magnetic Resonance Imaging in Myocardial Infarction model (심근경색 모델에서 자기공명영상에 대한 비교 연구)

  • Lim, Cheong-Hwan;Jung, Hong-Ryang;Kim, Jeong-Koo
    • Journal of radiological science and technology
    • /
    • v.24 no.2
    • /
    • pp.19-22
    • /
    • 2001
  • The purpose of this study is to evaluate time course of signal enhancement on Gadomer-17 enhance MRI, and to correlate the size of enhanced area with that of the infarct area on 2'3'5'-triphenyl tetrazolium chloride(TTC) histochemical examination for the assessment of myocardial viability in reperfused Myocardial Infarction in a cat model. Tan cats(average weight: 3.8 kg) which had undergone 90 minutes of occlusion of the LAD followed by 90 minutes of reperfusion underwent MR T2-weighted imaging, and T1-weighted imaging, enhanced T1-weighted imaging. We used 1.5T Magneton Vision MRI system(Siemens, Erlangen, Germany). Signal intensities were measured in the enhanced and non-enhanced areas of enhanced T1-weighted imaging. and TTC histochemical staining the size of the abnormal signal area on each image was compared with that of the infarct area. Maximum enhancement was detected during a $40{\sim}60$ minute period with an average enhancement of $168{\pm}9.9%$ of normal myocardium. TTC staining revealed that the size of the high signal area on T2-weighted images and of the enhanced area on enhanced T1-weighted images was greater than that of the infarct area($T2=48.1%{\pm}3.7$, enhanced $T1=47.2%{\pm}2.6$, TTC $staining=38.7%{\pm}3.1$ ; p<0.05). In reperfused Myocardial Infarction in a cat model, enhanced MR imaging delineates reversibly and irreversibly damaged myocardium, with a strong enhancement and a broad temporal window. We may therefore expect that enhanced MR image is useful for demonstrating myocardial injury.

  • PDF

Characterization of focal hepatic lesions with ferucarbotran (Resovist)-enhanced T2 and T2*-weighted MR imaging

  • 조은석;유정식
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.40-40
    • /
    • 2003
  • The purpose of this study was to characterize focal hepatic lesions through pre and post ferucarbotran-enhanced T2 and T2*-weighted imaging and to help differentiate benign and malignant lesions 대상 및 방법: Consecutive 34 patients with 52 hepatic lesions underwent MRI before and after intravenous bolus injection of ferucarbotran (Resovist Sobering, Berlin, Germany) for evaluation of focal hepatic lesions. Lesions included hemangiomas (n=17), metastases (n=12), cysts (n=10), hepatocellular carcinomas (n=8), dysplastic nodules (n=4), and focal fat deposit (n=1). T2-weighted fast spin echo (TR/TE: 4060/138) and gradient echo T2*-weighted images(TR/TE: 140/5.3, FA = 90) were obtained according to the institutional routine imaging protocol. Lesional signal-intensity and lesion-to-liver contrast changes were measured by contrast-to-noise ratio (CNR) from region of interest.

  • PDF

Correlation between magnetic resonance imaging and cone-beam computed tomography for maxillary sinus graft assessment

  • Laurino, Fernando Antonio Reis;Choi, Isabela Goulart Gil;Kim, Jun Ho;Gialain, Ivan Onone;Ferraco, Renato;Haetinger, Rainer Guilherme;Pinhata-Baptista, Otavio Henrique;Abdala-Junior, Reinaldo;Costa, Claudio;Cortes, Arthur Rodriguez Gonzalez
    • Imaging Science in Dentistry
    • /
    • v.50 no.2
    • /
    • pp.93-98
    • /
    • 2020
  • Purpose: Little is known regarding the accuracy of clinical magnetic resonance imaging (MRI) protocols with acceptable scan times in sinus graft assessment. The aim of this study was to evaluate the correlations between MRI and cone-beam computed tomographic (CBCT) measurements of maxillary sinus grafts using 2 different clinical MRI imaging protocols. Materials and Methods: A total of 15 patients who underwent unilateral sinus lift surgery with biphasic calcium phosphate were included in this study. CBCT, T1-weighted MRI, and T2-weighted MRI scans were taken 6 months after sinus lift surgery. Linear measurements of the maximum height and buccolingual width in coronal images, as well as the maximum anteroposterior depth in sagittal images, were performed by 2 trained observers using CBCT and MRI Digital Imaging and Communication in Medicine files. Micro-computed tomography (micro-CT) was also performed to confirm the presence of bone tissue in the grafted area. Correlations between MRI and CBCT measurements were assessed with the Pearson test. Results: Significant correlations between CBCT and MRI were found for sinus graft height (T1-weighted, r=0.711 and P<0.05; T2-weighted, r=0.713 and P<0.05), buccolingual width (T1-weighted, r=0.892 and P<0.05; T2-weighted, r=0.956 and P<0.05), and anteroposterior depth (T1-weighted, r=0.731 and P<0.05; T2-weighted, r=0.873 and P<0.05). The presence of bone tissue in the grafted areas was confirmed via micro-CT. Conclusion: Both MRI pulse sequences tested can be used for sinus graft measurements, as strong correlations with CBCT were found. However, correlations between T2-weighted MRI and CBCT were slightly higher than those between T1-weighted MRI and CBCT.

Assessment of Diffusion-Weighted Imaging-FLAIR Mismatch: Comparison between Conventional FLAIR versus Shorter-Repetition-Time FLAIR at 3T

  • Goh, Byeong Ho;Kim, Eung Yeop
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.2
    • /
    • pp.88-94
    • /
    • 2016
  • Purpose: Fluid-attenuated inversion recovery (FLAIR) imaging can be obtained faster with shorter repletion time (TR), but it gets noisier. We hypothesized that shorter-TR FLAIR obtained at 3 tesla (3T) with a 32-channel coil may be comparable to conventional FLAIR. The aim of this study was to compare the diagnostic value between conventional FLAIR (TR = 9000 ms, FLAIR9000) and shorter-TR FLAIR (TR = 6000 ms, FLAIR6000) at 3T in terms of diffusion-weighted imaging-FLAIR mismatch. Materials and Methods: We recruited 184 patients with acute ischemic stroke (28 patients < 4.5 hours) who had undergone 5-mm diffusion-weighted imaging (DWI) and two successive 5-mm FLAIR images (no gap; in-plane resolution, $0.9{\times}0.9mm$) at 3T with a 32-channel coil. The acquisition times for FLAIR9000 and FLAIR6000 were 108 seconds (generalized autocalibrating partially parallel acquisitions [GRAPPA] = 2) and 60 seconds (GRAPPA = 3), respectively. Two radiologists independently assessed the paired imaging sets (DWI-FLAIR9000 and DWI-FLAIR6000) for the presence of matched hyperintense lesions on each FLAIR imaging. The signal intensity ratios (area of DWI lesion to contralateral normal-appearing region) on both FLAIR imaging sets were compared. Results: DWI-FLAIR9000 mismatch was present in 39 of 184 (21.2%) patients, which was perfectly the same on FLAIR6000. Three of 145 patients (2%) with DWI-matched lesions on FLAIR9000 had discrepancy on FLAIR6000, showing no significant difference (P > 0.05). Interobserver agreement was excellent for both DWI-FLAIR9000 and DWI-FLAIR6000 (k = 0.904 and 0.883, respectively). Between the two FLAIR imaging sets, there was no significant difference of signal intensity ratio (mean, standard deviation; $1.25{\pm}0.20$; $1.24{\pm}0.20$, respectively) (P > 0.05). Conclusion: For the determination of mismatch or match between DWI and FLAIR imaging, there is no significant difference between FLAIR9000 and FLAIR6000 at 3T with a 32-channel coil.

Usefulness of Breath-hold T2-weighted MR Imaging in Patients with Myocardial Infarction: Comparison with Delayed Enhancement (심근경색을 가진 환자에서 호흡정지 T2강조 자기공명영상의 유용성: 지연 조영증강 영상과의 비교)

  • Choi Sang Il;Kang Sung-Kwon;Ryu Won Hee;Lim Cheong;Choh Joong Haeng;Lee Whal;Jeong Jin-Wook;Park Jae-Hyung;Lee Kyung Won
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.2
    • /
    • pp.132-136
    • /
    • 2003
  • Purpose : To evaluate the usefulness of breath-hold T2-weighted MR imaging in patients with myocardial infarction. Materials and Methods : We investigated 11 patients with myocardial infarction who shown delayed enhancement on MR imaging. Infarcted myocardium on T2-weighted MR imaging was classified as high, iso, and low signal area comparing with normal myocardium. The intensity and transmural extent of infracted myocardium was also analyzed. On the basis of clinical information, the stage of infracted myocardium on T2-weighted MR imaging was assessed. Results : It was observed high signal area in 12 segments of 5 patients, low in 12 segments of 6 patients on T2-weighted MR imaging. The high signal intensity of infarcted myocardium was shown as $175{\pm}9\%$ comparing with that of the normal myocardium, low signal intensity as $73{\pm}5\%\;(p\;<\;0.05)$. In the evaluation of transmural extent, the high signal areas on T2-weighted MR imaging were larger than infarct area on delayed enhancement imaging $(100\%\;vs.49\%{\pm}17\%)$, whereas low signal areas on T2-weighted MR imaging correlated. High signal area was visualized on T2-weighted MR imaging within 11 days, whereas low-signal area was seen after 7 months. Conclusion : Breath-hold T2-weighted MR imaging is useful in the evaluation of stage as well as edema and fibrous scar in patients with myocardial infarction.

  • PDF

MAGNETIC RESONANCE IMAGING APPEARANCE OF EPIDURAL HEMATOMA IN DOG (개의 경막외 혈종의 자기공명영상학적 진단)

  • Choi, Chi-Bong;Kim, Hwi-Yool;Kim, Su-Gwan;Bae, Chun-Sik
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.5
    • /
    • pp.488-491
    • /
    • 2005
  • A 3-year-old female, 5kg, Shih-tzu developed an acute onset of depression, disorientation, hypersalivation, nystagmus after falling down 2 meter height place. In plain skull radiography, there was fracture line in the frontal and parietal bones and next day magnetic resonance imaging examination was performed. Magnetic resonance imaging of the brain was performed with 3.0 Tesla unit. Under general anesthesia, the dog was placed in prone with its head positioned in a birdcage coil. Transverse, sagittal and coronal fast spin echo images of the brain were obtained with the following pulse sequences: T1 weighted images (TR = 560 ms and TE = 18.6 ms) and T2 weighted images (TR = 3500 ms and TE = 80 ms). Magnetic resonance imaging showed epidural hematoma in the left frontal area resulting in compression of the adjacent brain parenchyma. Left lateral ventricle was compressed secondarily and the longitudinal fissure shifted to the right, representing mass effect. The lesion was iso-to slightly hyperintense on T1 weighted image and iso-slightly hypointense signal on T2 weighted image. At necropsy, there was a skull fracture and epidural hematoma in the left frontal area. Magnetic resonance imaging of epidural hematoma is reviewed.

Electron Microscopy and MR Imaging Findings in Embolic Effects

  • Park Byung-Rae;Koo Bong-Oh
    • Biomedical Science Letters
    • /
    • v.10 no.4
    • /
    • pp.367-373
    • /
    • 2004
  • Evaluated the hyperacute embolic effects of triolein and oleic acid in cat brains by using MR image and electron microscopy. In fat embolism, free fatty acid is more toxic than neutral fat in terms of tissue damage. T2-Weighted imaging, diffusion-weighted imaging, and contrast-enhanced T1-weighted imaging were performed in cat brains after the injection of triolein (group 1, n=8) or oleic acid (group 2, n=10) into the internal carotid artery. MR image were quantitatively assessed by comparing the lesions with their counterparts on T2-weighted images, apparent diffusion coefficient (ADC) maps, and contrast-enhanced T1-weighted images. Electron microscopic findings in group 1 were compared with those in group 2. Qualitatively, MR images revealed two types of lesions. Type 1 lesions were hyperintense on diffusion-weighted images and hypointense of ADC maps. Type 2 lesions were isointense or mildly hyperintense on diffusion-weighted images and isointense on ADC maps. Quantitatively, the signal intensity rations of type 1 lesions in group 2 specimens were significantly higher on T2-weighted images (P=.013)/(P=.027) and lower on ADC maps compared with those of group 1. Electron microscopy of type 1 lesions in both groups revealed more prominent widening of the perivascular space and swelling of the neural cells in groups 1. MR and electron microscopic data on cerebral fat embolism induced by either triolein or oleic acid revealed characteristics suggestive of both vasogenic and cytotoxic edema in the hyperacute stage. Tissue damage appeared more severe in the oleic acid group than in the triolein group.

  • PDF

Distinction between Intradural and Extradural Aneurysms Involving the Paraclinoid Internal Carotid Artery with T2-Weighted Three-Dimensional Fast Spin-Echo Magnetic Resonance Imaging

  • Lee, Nam;Jung, Jin-Young;Huh, Seung-Kon;Kim, Dong-Joon;Kim, Dong-Ik;Kim, Jin-Na
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.6
    • /
    • pp.437-441
    • /
    • 2010
  • Objective : The precise intra- vs. extradural localization of aneurysms involving the paraclinoid internal carotid artery is critical for the evaluation of patients being considered for aneurysm surgery. The purpose of this study was to investigate the clinical usefulness of T2-weighted threedimensional (3-D) fast spin-echo (FSE) magnetic resonance (MR) imaging in the evaluation of unruptured paraclinoid aneurysms. Methods : Twenty-eight patients with unruptured cerebral aneurysms in their paraclinoid regions were prospectively evaluated using a T2- weighted 3-D FSE MR imaging technique with oblique coronal sections. The MR images were assessed for the location of the cerebral aneurysm in relation to the dural ring and other surrounding anatomic compartments, and were also compared with the surgical or angiographic findings. Results : All 28 aneurysms were identified by T2-weighted 3D FSE MR imaging, which showed the precise anatomic relationships in regards to the subarachnoid space and the surrounding anatomic structures. Consequently, 13 aneurysms were determined to be intradural and the other 15 were deemed extradural as they were confined to the cavernous sinus. Of the 13 aneurysms with intradural locations, three superior hypophyseal artery aneurysms were found to be situated intradurally upon operation. Conclusion : High-resolution T2-weighted 3-D FSE MR imaging is capable of confirming whether a cerebral aneurysm at the paraclinoid region is intradural or extradural, because of the MR imaging's high spatial resolution. The images may help in identifying patients with intradural aneurysms who require treatment, and they also can provide valuable information in the treatment plan for paraclinoid aneurysms.