• Title/Summary/Keyword: T2-Fat Saturation

Search Result 11, Processing Time 0.022 seconds

Magnetic Resonance Imaging Evaluation of the Prostate in Normal Dogs

  • Cho, Yu-Gyeong;Choi, Ho-jung;Lee, Ki-ja;Lee, Youngwon
    • Journal of Veterinary Clinics
    • /
    • v.37 no.6
    • /
    • pp.317-323
    • /
    • 2020
  • The aims of this study were to describe the appearance and size of the normal canine prostate using magnetic resonance (MR) imaging and to calculate the apparent diffusion coefficient (ADC) values. MR images were obtained from seven intact male beagle dogs using a 1.5 T MR unit. The sequences included pre- and post-contrast T1- and T2-weighted imaging with and without fat saturation. The signal intensity of the prostate was compared with the adjacent musculature, fat, and urine in the urinary bladder. We recorded the mean prostatic length, width, and height and the length of the sixth lumbar vertebral body (L6). In addition, the prostatic length (rL), width (rW), and height (rH) ratios to L6 were calculated. Diffusion-weighted images of the prostate were obtained and ADC values were calculated. The prostate was bilobed and oval-shaped, homogenous on T1-weighted images, and heterogeneous with radiating lines on T2-weighted images. Post-contrast T1-weighted sequences showed contrast enhancement of the central and radiating striations. The prostatic capsule was clearly identified on post-contrast T1-weighted images with fat saturation. The ADC values were 1.72-2.04 × 10-3mm2/sec (mean, 1.88 × 10-3mm2/sec). Knowledge of the normal appearance of the prostate on MR images is essential to assess prostatic diseases in dogs.

A Study on Optimized MRI Fat-Saturation Technique for Brachial Plexus Patients : Focused on SPAIR and STIR Fat-Saturation (상완신경총 환자에서 최적의 자기공명영상 지방소거 기법에 관한 연구 : SPAIR, STIR 지방소거 중심으로)

  • Goo, Eunhoe
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.5
    • /
    • pp.271-278
    • /
    • 2014
  • The purpose of this study is to know optimized fat suppression techniques for brachial plexus compared with STIR and SPAIR T1, T2 techniques. A total of 30 normal volunteers without brachial plexus disease were studied on a 3.0 T MRI scanner. As an analytical method, SNR, CNR, 4-point grading scale were evaluated by using three pulse sequences. As a quantitative analysis, the SNR, CNR for SPAIR T1 technique provided high value in branchial plexus roots (03.07, -2.25), branchial plexus trunks(06.70, 36.31)(p<0.05). As a qualitative Analysis, The visibility for delineation of brachial plexus, fat suppression, artifact was significantly better on SPAIR T1(3.2, 3.6, 3.4) technique(p<0.05).

Chemical Saturation Breath-hold Fast MR Imaging for characterization of Regional Fatty Changes in Liver (화학적 포화 호흡정지 급속 자기공명영상에서 국소적 간지방병변의 특성화)

  • 김동국;유정식;김태훈;오세정;김지형
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.135-141
    • /
    • 1997
  • Purpose: To assess the usefulness of breath-hold fast MR imaging of liver with fat suppression (FS) by application of chemical saturation technique in the diagnosis of regional fatty changes suspected in sonography. Materials and Methods: Thirteen patients who had focal lesions with diffuse, homogeneous signal changes after FS through chemical saturation technique without additional changes of imaging parameter during MR imaging of liver were selected. T1-weighted fast low-angle shot and T2-weighted turbo spin-echo sequences were obtained with or without FS during each single breath-holding session. Subjective changes of signal intensity between the pre-FS and the FS images were compared with the sonographic findings in each lesion. Results: Seven lesions of decreased signal intensity after FS on T1 or T2-weighted images, including three lesions only at FS T1 images, were regarded as focal fat infiltration. All seven lesions had compatible sonographic findings as homogenously echogenic areas. Another six lesions of subjectively increased signal intensity including two lesions only at FS T2 images were regarded as focal fat sparing. All six lesions had sonographic findings as homogenous echo poor areas suggesting focal fat sparing. In cases regarded as fat infiltration, score changes were more prominent at FS T1 images than FS T2 images(p=0.0002). In cases regarded as fat sparing, score changes were more prominent at FS T2 images than FS T1 images(p=0.042). Conclusion: Breath-hold fast T1 and T2-weighted MR imaging with and without chemical saturation pre-pulse may be sufficient for characterization of regional fatty changes in the differential diagnosis of focal hepatic lesion found at sonography.

  • PDF

Improvement of Fat Suppression and Artifact Reduction Using IDEAL Technique in Head and Neck MRI at 3T

  • Hong, Jin Ho;Lee, Ha Young;Kang, Young Hye;Lim, Myung Kwan;Kim, Yeo Ju;Cho, Soon Gu;Kim, Mi Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.1
    • /
    • pp.44-52
    • /
    • 2016
  • Purpose: To quantitatively and qualitatively compare fat-suppressed MRI quality using iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) with that using frequency selective fat-suppression (FSFS) T2- and postcontrast T1-weighted fast spin-echo images of the head and neck at 3T. Materials and Methods: The study was approved by our Institutional Review Board. Prospective MR image analysis was performed in 36 individuals at a single-center. Axial fat suppressed T2- and postcontrast T1-weighted images with IDEAL and FSFS were compared. Visual assessment was performed by two independent readers with respect to; 1) metallic artifacts around oral cavity, 2) susceptibility artifacts around upper airway, paranasal sinus, and head-neck junction, 3) homogeneity of fat suppression, 4) image sharpness, 5) tissue contrast of pathologies and lymph nodes. The signal-to-noise ratios (SNR) for each image sequence were assessed. Results: Both IDEAL fat suppressed T2- and T1-weighted images significantly reduced artifacts around airway, paranasal sinus, and head-neck junction, and significantly improved homogeneous fat suppression in compared to those using FSFS (P < 0.05 for all). IDEAL significantly decreased artifacts around oral cavity on T2-weighted images (P < 0.05, respectively) and improved sharpness, lesion-to-tissue, and lymph node-to-tissue contrast on T1-weighted images (P < 0.05 for all). The mean SNRs were significantly improved on both T1- and T2-weighted IDEAL images (P < 0.05 for all). Conclusion: IDEAL technique improves image quality in the head and neck by reducing artifacts with homogeneous fat suppression, while maintaining a high SNR.

Comparison of mDixon, T2 TSE, and T2 SPIR Images in Magnetic Resonance Imaging of Lumbar Sagittal Plane (요추 시상면 자기공명 영상검사에서 mDixon과 T2 TSE, T2 SPIR 영상의 비교 연구)

  • Jung, Da-Bin;Lee, Hae-Kag;Heo, Yeong-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.927-933
    • /
    • 2021
  • The purpose of this study was to compare and analyze the differences in scan time, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) in the third lumbar vertebral region including the back fat, spinal cord, and cerebrospinal fluid using the mDixon, T2 TSE, and T2 spectral pre-saturation with inversion-recovery (SPIR) techniques. With the factors affecting the SNR fixed, the lumbar sagittal plane images of 30 adults were compared on mDixon, T2 TSE, and T2 SPIR imaging tests. The test times for mDixon, T2 TSE, and T2 SPIR were 115 seconds, 60 seconds, and 60 seconds, respectively. The mDixon T2 images showed higher SNR than the T2 TSE images at the third lumbar vertebral region (p<0.05), lower SNR in the back fat and cerebrospinal fluid (p<0.05) areas, and comparable SNR in the spinal cord (p>0.05). The CNR between the third lumbar vertebral area and back fat was higher in the mDixon T2 images, and the CNR of the cerebrospinal fluid and spinal cord images was higher in the T2 TSE images (p<0.05). The mDixon T2 FS images CNR was lower for the 3rd lumbar vertebral body region and back fat than the T2 SPIR images, and higher for the spinal cord and cerebrospinal fluid images (p<0.05). The CNR between the third lumbar body and back fat areas was higher in the mDixon T2 FS images (p<0.05), and there was no difference in the CNR in the images of the cerebrospinal fluid and the spinal cord (p>0.05). It is difficult to determine whether the mDixon technique is superior to the conventional T2 TSE and T2 SPIR techniques in terms of test time, SNR, and CNR. This study was confined to patients with simple lower back pain and was limited by controlled experimental conditions. Studies using clinically applied protocols are warranted in the future.

Intramedullary Spinal Cord Lipoma Extending from the Cervicomedullary Junction to the Upper Thoracic Cord

  • Lee, Deok-Gu;Yoon, Seok-Mann;Shim, Jai-Joon;Bae, Hack-Gun
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.1
    • /
    • pp.71-73
    • /
    • 2005
  • A case of intramedullary spinal cord lipoma is presented. A one month-old male infant presented with irritability and weakness on his upper extremities. A magnetic resonance[MR] image of the cervical spine demonstrated a well defined, high signal intensity lesion on both T1 and T2-weighted MR images and suppression on the fat saturation sequence. The tumor mass extended from the foramen magnum to T2 vertebra level. Ventral displacement of the spinal cord with kinking of the cervico-medullary junction was evident on the T2-weighted sagittal image. Partial resection of the tumor mass through laminoplastic laminotomy from C1 to T2 resulted in improved motor weakness on his upper extremities.

Analysis of Image Distortion on Magnetic Resonance Diffusion Weighted Imaging

  • Cho, Ah Rang;Lee, Hae Kag;Yoo, Heung Joon;Park, Cheol-Soo
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.381-386
    • /
    • 2015
  • The purpose of this study is to improve diagnostic efficiency of clinical study by setting up guidelines for more precise examination with a comparative analysis of signal intensity and image distortion depending on the location of X axial of object when performing magnetic resonance diffusion weighted imaging (MR DWI) examination. We arranged the self-produced phantom with a 45 mm of interval from the core of 44 regent bottles that have a 16 mm of external diameter and 55 mm of height, and were placed in 4 rows and 11 columns in an acrylic box. We also filled up water and margarine to portrait the fat. We used 3T Skyra and 18 Channel Body array coil. We also obtained the coronal image with the direction of RL (right to left) by using scan slice thinkness 3 mm, slice gap: 0mm, field of view (FOV): $450{\times}450mm^2$, repetition time (TR): 5000 ms, echo time (TE): 73/118 ms, Matrix: $126{\times}126$, slice number: 15, scan time: 9 min 45sec, number of excitations (NEX): 3, phase encoding as a diffusion-weighted imaging parameter. In order to scan, we set b-value to $0s/mm^2$, $400s/mm^2$, and $1,400s/mm^2$, and obtained T2 fat saturation image. Then we did a comparative analysis on the differences between image distortion and signal intensity depending on the location of X axial based on iso-center of patient's table. We used "Image J" as a comparative analysis programme, and used SPSS v18.0 as a statistic programme. There was not much difference between image distortion and signal intensity on fat and water from T2 fat saturation image. But, the average value depends on the location of X axial was statistically significant (p < 0.05). From DWI image, when b-value was 0 and 400, there was no significant difference up to $2^{nd}$ columns right to left from the core of patient's table, however, there was a decline in signal intensity and image distortion from the $3^{rd}$ columns and they started to decrease rapidly at the $4^{th}$ columns. When b-value was 1,400, there was not much difference between the $1^{st}$ row right to left from the core of patient's table, however, image distortion started to appear from the $2^{nd}$ columns with no change in signal intensity, the signal was getting decreased from the $3^{rd}$ columns, and both signal intensity and image distortion started to get decreased rapidly. At this moment, the reagent bottles from outside out of 11 reagent bottles were not verified from the image, and only 9 reagent bottles were verified. However, it was not possible to verify anything from the $5^{th}$ columns. But, the average value depends on the location of X axial was statistically significant. On T2 FS image, there was a significant decline in image distortion and signal intensity over 180mm from the core of patient's table. On diffusion-weighted image, there was a significant decline in image distortion and signal intensity over 90 mm, and they became unverifiable over 180 mm. Therefore, we should make an image that has a diagnostic value from examinations that are hard to locate patient's position.

Quantitative Analysis of Magnetization Transfer by Phase Sensitive Method in Knee Disorder (무릎 이상에 대한 자화전이 위상감각에 의한 정량분석법)

  • Yoon, Moon-Hyun;Sung, Mi-Sook;Yin, Chang-Sik;Lee, Heung-Kyu;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.98-107
    • /
    • 2006
  • Magnetization Transfer (MT) imaging generates contrast dependent on the phenomenon of magnetization exchange between free water proton and restricted proton in macromolecules. In biological materials in knee, MT or cross-relaxation is commonly modeled using two spin pools identified by their different T2 relaxation times. Two models for cross-relaxation emphasize the role of proton chemical exchange between protons of water and exchangeable protons on macromolecules, as well as through dipole-dipole interaction between the water and macromolecule protons. The most essential tool in medical image manipulation is the ability to adjust the contrast and intensity. Thus, it is desirable to adjust the contrast and intensity of an image interactively in the real time. The proton density (PD) and T2-weighted SE MR images allow the depiction of knee structures and can demonstrate defects and gross morphologic changes. The PD- and T2-weighted images also show the cartilage internal pathology due to the more intermediate signal of the knee joint in these sequences. Suppression of fat extends the dynamic range of tissue contrast, removes chemical shift artifacts, and decreases motion-related ghost artifacts. Like fat saturation, phase sensitive methods are also based on the difference in precession frequencies of water and fat. In this study, phase sensitive methods look at the phase difference that is accumulated in time as a result of Larmor frequency differences rather than using this difference directly. Although how MT work was given with clinical evidence that leads to quantitative model for MT in tissues, the mathematical formalism used to describe the MT effect applies to explaining to evaluate knee disorder, such as anterior cruciate ligament (ACL) tear and meniscal tear. Calculation of the effect of the effect of the MT saturation is given in the magnetization transfer ratio (MTR) which is a quantitative measure of the relative decrease in signal intensity due to the MT pulse.

  • PDF

MRI Evaluation for the Histologic Components of Soft-tissue Tumors: Comparison of MEDIC and Fast SE T2-weighted Imaging (연조직종양의 조직 성분 평가를 위한 자기공명영상: MEDIC 과 지방억제 T2 영상의 비교)

  • Moon, Tae-Yong;Lee, In-Sook;Lee, Jun-Woo;Choi, Kyung-Un;Kim, Jeung-Il;Kim, E. Edmund
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Purpose : To compare Multi Echo Data Image Combination (MEDIC) and fast SE T2-weighted images with fat saturation (T2FS) to suggest more accurate evaluation of the histologic components of soft-tissue tumors. Materials and Methods : The experimental group included 25 histologic tissues (5 vascular, 4 neural, 4 fibrous, 4 hypercellular, 2 hemorrhagic necroses, 2 cystic, 2 lipoid, 1 myxoid stroma, and 1 thrombus) in 10 patients who had pathologically confirmed schwannoma (n = 3), hemangioma (n = 2), lipoma (n = 1), angiokeratoma (n = 1), synovial sarcoma (n = 1), liposarcoma (n = 1), and malignant fibrous histiocytoma (n = 1). The inhomogeneity values were measured using the standard deviation value (SD) divided by the mean value as SD presents an error amount similar to that of imaging heterogeneity. Results : The inhomogeneity values of 25 histologic components were lower on MEDIC than those on T2FS (p < .001). Conclusion : We conclude that MEDIC is more accurate than T2FS for evaluating the tissue components of soft-tissue tumors using digitalized data because MEDIC images have far lower inhomogeneity.

  • PDF

Spectroscopic Imaging at 1.0Tesla MR Unit (1.0Tesla 자기공명 영상장치에서의 분광영상기법에 관한 연구)

  • Yi, Y.;Ryu, T.H.;Oh, C.H.;Ahn, C.B.;Lee, H.K.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.517-527
    • /
    • 1997
  • Magnetic Resonance Spectroscopic Imaging is a methodology combining the imaging and spectroscopy. It can provide the spectrum of each areas of image so that one can easily compare the spectrum of one position to another position of the image. In this study, we developed pulse sequence or the spectroscopic imaging method, RF wave forms or the saturation of water signal, computer simulations to validate our method, and confirmed the methodology with phantom experiment. Then we applied the spectroscopic method to human subject and identified a few important metabolites in in vivo. To develope a water saturating RF waveform, we used Shinnar-Le-Roux algorithm and obtained maximum phase RF waveform. With this RF pulse, it could suppress the water signal to 1:1000. The magnet is shimmed to under 1.0ppm with auto-shimming technique. The saturation bandwidth is 80Hz(2ppm). The water and fat seperation is 3.3ppm(about 140Hz at 1 Tesla magnet), the bandwidth is enough to resolve the difference. But we are more concerned about the narrow window in between the two peaks, in which the small quantity of metabolites reside. We performed the computer simulation and phantom experiments in 8*8 matrix form and showed good agreement in the image and spectrum. Finally we applied spectroscopic imaging to the brain of human subject. Only the lipid signal was shown in the periphery region which agrees with the at distribution in human head surface area. The spectrum inside the brain shows the important metabolites such as NAA, Cr/PCr, Choline. We here have shown the spectroscopic imaging which is normally done above 1.5 Tesla machine can be performed in the 1 Tesla Magnetic Resonance Imaging Unit.

  • PDF