• Title/Summary/Keyword: T-mode vibration

Search Result 111, Processing Time 0.028 seconds

An Experimental Study on the Vibrational Characteristics of the Rotor Blade with Fiber Reinforced Plastics (복합재료 FRP로 제작된 Rotor Blade 진동특성 분석에 관한 실험적 연구)

  • Son, C.Y.;Byun, H.I.;Paik, J.S.;Shin, J.Y.;Lee, J.T.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.846-851
    • /
    • 2005
  • The purpose of this paper is that investigates the dynamic behavior characteristic of W.T.S(Wind turbine System) and carries out the evaluation analysis during operating W.T.S. To investigate the dynamic behavior characteristic of W.T.S, the experiments to measure vibration of the blade from the attached accelerometer on the flap and edge section of the blade that is one of the most important elements of dynamic characteristic of W.T.S are performed. Natural frequency and mode shape are calculated with commercial program (ANSYS) using the measured vibration acceleration that receives the signal with F.F.T Analyzer from the accelerometer. For validation of these experiments, the finite element analysis is performed with commercial F.E.M program (ANSYS) on the basis of the natural frequency and mode shape. The results indicate that experimental values have good agreements with the finite element analysis.

  • PDF

An Experimental Study on the Vibrational Characteristics of the Rotor Blade with Fiber Reinforced Plastics (복합재료 FRP로 제작된 Rotor Blade 진동특성 분석에 관한 실험적 연구)

  • Paik, J.S.;Lee, K.S.;Park, J.V.;Lee, J.T.;Son, C.Y.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1232-1240
    • /
    • 2005
  • The purpose of this paper is that investigates the dynamic behavior characteristic of W.T.S (wind turbine system) and carries out the evaluation analysis during operating W.T.S. To investigate the dynamic behavior characteristic of W.T.S, the experiments to measure vibration of the blade from the attached accelerometer on the flap and edge section of the blade that is one of the most important elements of dynamic characteristic of W.T.S are performed. Natural frequency and mode shape are calculated with commercial program ( ANSYS) using the measured vibration acceleration that receives the signal with F.F.T Analyzer from the accelerometer For validation of these experiments, the finite element analysis is performed with commercial F.E.M program (ANSYS) on the basis of the natural frequency and mode shape. The results indicate that experimental values have good agreements with the finite element analysis.

Acoustic Investigation on BFP Piping System in a Power Plant (발전소 급수용 펌프 배관계의 음향학적 현상 고찰)

  • Yang, K.H.;Cho, C.H.;Bae, C.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1029-1035
    • /
    • 2011
  • Pressure pulsation of exciting sources that generally occurs on the piping system connected to the discharge of BFP(boiler feed water pump) in power plants causes wave reflection, wave interference, resonance, standing wave and so on. But if the operating speed of the pump is changed, the state of the noise and vibration can be done because characteristics of the exciting source are changed. This paper is to investigate the cause of the noise and vibration occurring on the piping system when the operating speed of BFP is down in accordance with lowering of the power generation. It is approached to two points of view ; Firstly, it is examined whether the pulsation source impacts on the shell mode vibration that vibrates radially across the cross-section of the pipe. But it doesn't affect the shell mode as much as the resonance occurs. Secondly, to find the relation between the pulsation source and the acoustic mode of the piping system, analysis for the piping system by indirect BEM(boundary element method) is carried out. Therefore it is investigated that the mechanism of the noise and vibration relates with acoustic mode of the piping system.

Vibration Analysis of a Cable Supported Wind Turbine Tower Model (케이블 지지된 풍력발전기 타워 구조 모델의 진동해석)

  • Kim, Seock-Hyun;Park, Mu-Yeol;Cui, C.X.
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.47-53
    • /
    • 2007
  • A theoretical model based on Rayleigh-Ritz method is proposed to predict the resonance frequency of a W/T(Wind Turbine) tower structure supported by guy cables. In order to verify the validity of the theoretical model, a reduced W/T tower system is manufactured and tested. Frequency response and mode data are determined by modal testing and finite element analysis is performed to calculate the natural frequency of the tower model. Numerical and experimental results are compared with those by the theoretical analysis. Parametric study by the theoretical model shows how the cable tension and cable elasticity influence the resonance frequency of the W/T tower structure. Finally, vibration response under various rotating speed is investigated to examine the possibility of severe resonance.

  • PDF

Resonant Characteristics as the Variations of $\ell$/t(length/thicknes) Ratio of Pb(La,Ce)$TiO_3$ System Ceramics (Pb(La,Ce)$TiO_3$계 세라믹스의 길이와 두께비($\ell$/t)에 따른 공진특성)

  • 민석규;오동언;윤광희;류주현;박창엽;김종선
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.9
    • /
    • pp.720-725
    • /
    • 2001
  • In this study, Pb(La,Ce)Ti $O_3$ ceramics were manufactured for 20 MHz resonator application. Electromechanical coupling factor( $k_{t}$, $k_{t3}$, mechanical quality factor( $Q_{mt}$ , $Q_{mt3}$ and dydnamic range (D.R) of thickness vibration mode were measured as the variations of $\ell$/t(length/thickness) ratio of ceramic substrates. Mechanical quality factor( $Q_{mt3}$) and dynamic range of third overtone thickness vibration mode showed the highest value of 2,773 and 52.22dB at specimen S4($\ell$/t=12), respectively. The excellent temperature stability of resonant frequency suitable for resonator application was shown, regardless of thermal shock.k.ock.k.

  • PDF

Sensitivity Properties of Acoustic Emission Sensor Using NKN System Ceramics (NKN계 세라믹을 이용한 음향방출 센서의 감도 특성)

  • Hong, Jae-Il;Shin, Sang-Hoon;Yoo, Ju-Hyun;Jeong, Yeong-Ho;Lee, Sang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.696-701
    • /
    • 2014
  • In this study, in order to develop coupled vibration mode piezoelectric devices for Acoustic Emission (abbreviated as AE) sensor application with outstanding displacement and piezoelectric properties have been simulated by ATILA FEM program. And, From the results of ATILA simulation, the AE sensor specimen, obtained superior electromechanical coupling factor and displacement, when the size of specimen is $3.45mm{\Phi}{\times}3.45mm$ with ratio of diameter/thickness(${\Phi}/T$)= 1.0. Therefore, AE sensor was fabricated by (Na,K,Li)(Nb,Ta) $O_3$(abbreviated as NKL-NT) system piezoelectric ceramics using coupled vibration mode. The piezoelectric properties of NKL-NT ceramics was exhibited that piezoelectric constant($d_{33}$), piezoelectric voltage constant($g_{33}$) and electro mechanical coupling factor($k_p$) have the excellent values of 261[pC/N], 40.10[$10^{-3}Vm/N$], and 0.44, respectively. The manufactured piezoelectric device with ratio of ${\Phi}/T$= 1.0 indicated the optimum values of resonant frequency(fr)= 556.5[kHz], antiresonant frequency(fa)=631.1[kHz], and effective electromechanical coupling factor(keff)= 0.473. The maximum sensitivity of the coupled vibration mode AE sensor was 55[dB] at the resonant frequency of 75[kHz]. The results show that the coupled vibration mode piezoelectric device is a promising candidate for the application AE sensor piezoelectric device.

Piezoelectric and dielectric Properties for Multilayer Piezoelectric Transformer Of Modified $PbTiO_3$ system ceramics (적층 압전 변압기용 변성 $PbTiO_3$ 세라믹스의 압전 및 유전 특성)

  • Yoo, Kyung-Jin;Yoo, Ju-Hyun;Jeong, Yeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.344-345
    • /
    • 2006
  • In this study, in order to develop low temperature sintering piezoelectric transformer, $(Pb_{0.99-x}Ca_xSr_{0.01})Ti_{0.96}(Mn_{1/3}Sb_{2/3})_{0.04}O_3$ ceramic systems were fabricated using $Na_2CO_3-Li_2CO_3$ as sintering aids and investigated with the amount of Ca substitution. The piezoelectric transformer requires high electromechanical coupling factor $k_t$ and high mechanical quality factor $Q_{mt}$ for generating high output power At the ($PbCaSr)Ti(MnSb)O_3$ ceramics with 24mol% Ca substitution sintered at $900^{\circ}C$, electromechanical coupling factor $k_t$ and mechanical quality factor $Q_{mt}$ showed the optimal values of 0.504 and 1655 respectively, for thickness vibration mode multilayer piezoelectric transformer application.

  • PDF

Vibration control of active magnetic bearing systems using digital signal processor

  • Shimomachi, T.;Fukata, S.;Kouta, Y.;Ishimatsu, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1178-1183
    • /
    • 1990
  • A digital signal processor(DSP) is applied to realizing a compensator of control system of active magnetic bearings, to restrict a resonance caused by the first-order bending vibration of a flexible rotor, and to run the rotor beyond the critical speed. A full-order observer is applied to the translatory rotor-motion with the first-order vibration mode. A PID control is used for the conical motion. The rotor used in the experiments is symmetric, and an electromagnet and a displacement sensor are set in collocation.

  • PDF

Vibration of T-type Timoshenko frames subjected to moving loads

  • Wang, Rong-Tyai;Lin, Jin-Sheng
    • Structural Engineering and Mechanics
    • /
    • v.6 no.2
    • /
    • pp.229-243
    • /
    • 1998
  • In this study, a theoretical method to analyze the vibration of a T-type Timoshenko frame is proposed. The effects of axial inertia, rotatory inertia and shear deformation of each branch are considered. The orthogonality of any two distinct sets of mode shape functions is also demonstrated. Vibration of the frame due to moving loads is studied by the method and the response characteristics of the frame are investigated. Furthermore, the effect of column length on the response of the frame is also studied.

Trajectory of Resonant Displacement of Thickness Vibration Mode Piezoelectric Devices According to Diameter/Thickness Ratio (두께와 직경 비에 따른 두께진동모드 압전소자의 공진 변위 궤적)

  • Jeong, Yeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.105-109
    • /
    • 2012
  • In this study, thickness vibration mode piezoelectric devices for AE sensor application were simulated using ATILA FEM program, and then fabricated. Trajectory resonant displacement and electro mechanical coupling factors of the piezoelectric devices were investigated. The simulation results showed that excellent displacement and electro mechanical coupling factor was obtained when the ratio of diameter/thickness($\Phi/T$) was 0.75. The piezoelectric device of $\Phi/T$=0.75 exhibited the optimum values of fr= 183 kHz, displacement= $4.44{\times}10^{-7}[m]$, $k_{33}$= 0.69, which were suitable for the application of AE sensor piezoelectric device.