• Title/Summary/Keyword: T-fuzzy integral

Search Result 37, Processing Time 0.038 seconds

Robust Delay-dependent Stability Criteria for Takagi-Sugeno Fuzzy Systems with Time-varying Delay (시변지연을 가지는 TS퍼지시스템을 위한 견실 시간종속 안정성판별법)

  • Liu, Yajuan;Lee, Sangmoon;Kwon, Ohmin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.891-899
    • /
    • 2015
  • This paper presents the robust stability condition of uncertain Takagi-Sugeno(T-S) fuzzy systems with time-varying delay. New augmented Lyapunov-Krasovskii function is constructed to ensure that the system with time-varying delay is globally asymptotically stable. Also, less conservative delay-dependent stability criteria are obtained by employing some integral inequality, reciprocally convex approach and new delay-partitioning method. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed method.

Two-Link Manipulator Control Using Indirect Adaptive Fuzzy Controller

  • N., Waurajitti;J., Ngamwiwit;T., Benjanarasuth;H., Hirata;N., Komine
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.445-445
    • /
    • 2000
  • This paper proposes the MIMO indirect adaptive fuzzy controller to control the two-link manipulators. The input-output linearization technique, equivalent control input plus integral term, augmented error model and recursive least square adaptive law are used fer the controller. The linear type of fuzzifier-defuzzifier fuzzy logic system used for nonlinear function makes easy to farm the error model and able to follow the adaptive system approach. Such that control approach, the control system is not required joint speed and accerelation measurement and easy to implement and tune. The simulation results showed that the proposed controller has good control performance, stability, very small tracking error, decoupling, fast convergence, robust to parameter variation and load.

  • PDF

Smart tracking design for aerial system via fuzzy nonlinear criterion

  • Wang, Ruei-yuan;Hung, C.C.;Ling, Hsiao-Chi
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.617-624
    • /
    • 2022
  • A new intelligent adaptive control scheme was proposed that combines the control based on interference observer and fuzzy adaptive s-curve for flight path tracking control of unmanned aerial vehicle (UAV). The most important contribution is that the control configurations don't need to know the uncertainty limit of the vehicle and the influence of interference is removed. The proposed control law is an integration of fuzzy control estimator and adaptive proportional integral (PI) compensator with input. The rated feedback drive specifies the desired dynamic properties of the closed control loop based on the known properties of the preferred acceleration vector. At the same time, the adaptive PI control compensate for the unknown of perturbation. Additional terms such as s-surface control can ensure rapid convergence due to the non-linear representation on the surface and also improve the stability. In addition, the observer improves the robustness of the adaptive fuzzy system. It has been proven that the stability of the regulatory system can be ensured according to linear matrix equality based Lyapunov's theory. In summary, the numerical simulation results show the efficiency and the feasibility by the use of the robust control methodology.

Effective and Reliable Speed Control of Permanent Magnet DC (PMDC) Motor under Variable Loads

  • Tuna, Murat;Fidan, Can Bulent;Kocabey, Sureyya;Gorgulu, Sertac
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2170-2178
    • /
    • 2015
  • This paper presents the effective and reliable speed control of PMDC motors under variable loads and reference speeds. As is known DC motors are more preferred in industrial practices. This is that, the PMDC motors don’t require brush and commutator care and to increase in torque per motor depending on developments in power electronics. In this study, proportional-integral controller (PI) and fuzzy logic controller (FL) have been designed for speed control of PMDC motor. In the design of these controllers, characteristics such as minimum overrun time, response time to the load, settling time and ideal rise time have been taken into consideration for better stability performance. In this design, the best system response was searched by examining the effect of different defuzzification methods onto the fuzzy logic system response. In conclusion, it has been seen that FL controller has a better performance for variable speed-load control of PMDC motor compared to PI controller.

Fuzzy PID Control of Warranty Claims Time Series (보증 클레임 시계열 데이터를 위한 퍼지 PID 제어)

  • Lee, Sang-Hyun;Lee, Sang-Joon;Moon, Kyung-Il;Cho, Sung-Eui
    • Journal of Information Technology Services
    • /
    • v.8 no.4
    • /
    • pp.175-185
    • /
    • 2009
  • Objectifying claims filed during the warranty period, analyzing the current circumstances and improving on the problem in question is an activity worth doing that could reduce the likelihood of claims to occur, cut down on the costs, and enhance the corporate image of the manufacturer. Existing analyses of claims are confronted with two problems. First, you can't precisely assess the risks of claims involved by means of the value of claims per 100 products alone. Second, even in a normal state, the existing approach fails to capture the probabilistic conflicts that escape the upper control limit of claims, thus leading to wrong control activities. To solve the first problem, this paper proposed that a time series detection concept where the claim rate is monitored based on the date when problems are processed and a hazard function for expression of the claim rate be utilized. For the second problem, this paper designed a model whereby to define a normal state by making use of PID (Proportion, Integral, Differential) and infer by way of a fuzzy concept. This paper confirmed the validity and applicability of the proposed approach by applying methods suggested in the actual past data of warranty claims of a large-scaled automotive firm, unlike hypothetical simulation data, in order to apply them directly in industrial job sites, as well as making theoretical suggestions for analysis of claims.

A Reusability Measurement of the Reused Component by Employing Rough and Fuzzy Sets (러프와 퍼지 집합을 이용한 재사용 컴포넌트의 재사용도 측정)

  • Kim, Hye-Gyeong;Choe, Wan-Gyu;Lee, Seong-Ju
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2365-2372
    • /
    • 1999
  • The reusability measurement model should satisfy the following conditions : 1) can insert and delete metrics and components easily, 2) can compare and evaluate components quantitatively on the basis of validation, 3) don't require certain preassumed knowledge, and 4) can compute significance of each measurement attribute objectively. Therefore, in this paper, we propose a new reusability measurement model that can satisfy the above requirements. Our model selects the appropriate measurement attributes and calculates the relative significance of them by using rough set. Then, in order to measure the reusability of component, it integrates the significance of attributes and the measured value of them by using fuzzy integral. Finally, we apply our model to the reusability measurement of the function-oriented components and validate our model through statistical technique.

  • PDF

Robust Trajectory Tracking Control of a Mobile Robot Combining PDC and Integral Sliding Mode Control (PDC와 적분 슬라이딩 모드 제어를 결합한 이동 로봇의 강인 궤도 추적 제어)

  • Park, Min-soo;Park, Seung-kyu;Ahn, Ho-kyun;Kwak, Gun-pyong;Yoon, Tae-sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1694-1704
    • /
    • 2015
  • In this paper, a robust trajectory tracking control method of a wheeled mobile robot is newly proposed combining the PDC and the ISMC. The PDC is a relatively simple and easy control method for nonlinear system compared to the other non-linear control methods. And the ISMC can have robust and stable control characteristics against model uncertainties and disturbances from the initial time by placing the states on the sliding plane with desired nominal dynamics. Therefore, the proposed PDC+ISMC trajectory tracking control method shows robust trajectory tracking performance in spite of external disturbance. The tracking performance of the proposed method is verified through simulations. Even though the disturbance increases, the proposed method keeps the performance of the PDC method when there is no disturbance. However, the PDC trajectory tracking control method has increasing tracking error unlike the proposed method when the disturbance increases.